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ABSTRACT

Information-based Trajectory Optimization for Active Estimation

in Mechanical Systems

Andrew D. Wilson

In order to control complex and nonlinear systems, models are created to predict

physical behavior. These mathematical models contain a variety of parameters such as

masses, geometries, and friction coefficients that are specific to each system. In many

cases, these parameters may not be certain and must be estimated. However, the control

inputs or trajectory used to excite the system for purposes of estimation will affect the

ability and precision with which the parameters can be estimated. The primary focus of

this work is determining if local optimization approaches can be used to automatically

synthesize trajectories for better estimation of parameters in dynamical systems.

The motivation for the techniques used in this thesis stems from a case-study which is

presented on the simulation of a biomechanical model of the upper limb. This study mo-

tivates the need for estimation of model parameters due to high sensitivities of important

parameters such as the muscle wrapping radius. Additionally, the use of structured nu-

merical techniques in the simulation and optimization algorithms is studied and compared

to continuous based methods.
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Several algorithms are derived and validated using experimental trials. Continuous

and discrete methods of information optimization are derived, and results from a cart

and double pendulum system are provided. Additionally, optimization of the condition

number of the estimator is examined to improve the rate of convergence of the estimation

of three parameters in a cart pendulum system. Finally, a real-time implementation of

information-based trajectory synthesis and parameter estimation is provided with results

using the Baxter Research Robot.

In all of the algorithms, the variational approaches to optimal control are shown to

successfully improve the information metrics by orders of magnitude. Least-squares esti-

mators are successfully able to provide values for the parameters using the data collected

from the synthesized motions. These algorithms provide functional alternatives to purely

sampling-based or periodic excitation trajectories for dynamical systems. Future investi-

gation into managing process noise and unbiased errors will continue to improve automatic

estimation techniques for use by robots interacting in the physical world.
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Nomenclature

Symbol Description

θ ∈ Rp Parameter vector

I(θ) Fisher information matrix

β Least-squares estimator cost

ρ(x) Probability distribution

L Likelihood function

x, xd ∈ Rn System states and desired states

x̄ Extended system states

y, ỹ ∈ Rh System output (predicted and measured)

u ∈ Rm Control vector

f Dynamics model

g Measurement model

wy Noise distribution

φ First order parametric state sensitivity, dx
dθ

Ω Second order parametric state sensitivity, d2x
dθ2

Γθ Derivative of measurement model with respect to the parameters, dg
dθ

Σ Covariance matrix

J Trajectory optimization cost

ξ, η Trajectory with states and controls (η specifies a feasible trajectory)

ζ = (z, v) Variation along linearized trajectory (state and control)

α, µ Infeasible states and controls

K Projection matrix
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Symbol Description

A,B Dynamics linearization matrices

Q,P,R Weighting matrices (incremental state, terminal state, control)

κ Condition number

λn nth Eigenvalue of a given matrix

Lc, Ld Continuous and Discrete Lagrangians

qk ∈ Rn/2 Discrete configuration states

pk ∈ Rn/2 Discrete momentum states

ρk ∈ Rn/2 Discrete kinematic configuration states

Dxy(x, t) Partial derivative of y w.r.t. x

D1y(x, t) Partial derivative of y w.r.t. the 1st argument (i.e., x)
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CHAPTER 1

Introduction

Whether one realizes it or not, people are constantly creating and refining internal models

of objects and themselves while interacting with the physical world. Physical motion at a

macroscopic level is constrained by Newtonian mechanics with the classical relationships

between forces and momentum. The ability to internalize a model of an object provides

the means to predict motion and forces which aids in the interaction and control of

physical systems. These models and constraints are referred to as the dynamics of a

system. Classical control is a combination of feed-forward and feedback mechanisms with

the feed-forward component synthesized directly from these internal models [1].

For robots and machines, models have manifested primarily in two ways. The first is

the creation of differential equations representing the equations of motion of the system.

The mathematical equations can be obtained from a variety of sources including first

principle derivations and empirical formulations. This direct approach to mathematical

modeling has been used for control of manipulators, motion planning, and countless other

areas in robotics [2]. The second is the creation of models completely from collected

data through the use of traditional machine learning techniques such as neural networks

which use regression based approaches [3]. While both techniques are useful in many
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different situations, completely unstructured machine learning of large-scale dynamic sys-

tems is currently unrealistic due to the amount of training that would be required to

learn all aspects of the system. For people, this learning takes years of interaction with

systems to master. Instead, this thesis focuses on the former technique of modeling with

mathematical equations of motion derived from the structure of the system.

Even with a mathematical model, there are still significant sources of error that can

occur from the use of feed-forward control techniques. The following are three of the most

significant sources of error in feed-forward control:

Parametric Errors

Mathematical models, whether derived from first principles or empirical data, typically

contain a set of parameters within the equations. Using parametric formulations allow

models to be applied to general classes of systems rather than a single instance. Widely

used parameters in physical systems include values such as mass and length, or quantities

such as damping and friction coefficients. More abstract quantities can also be considered

as parameters such as the mean and variance of probability distributions which could be

used as components of a model. These parameters exist in the structure or topology of

the model, allowing the model structure to remain the same while capturing the effects

of changes in physical quantities such as mass.

In many cases, it may be advantageous to provide a robot with the topology of a

model that it may interact with; however, the exact parameters within that model may

be uncertain or unknown. This error will cause feed-forward predictions to be inaccurate;
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however through interaction with an object, the robot may be able to estimate more ac-

curate values of these parameters and much more quickly than if the model topology itself

was unknown. This problem involving the refinement of model parameters encompasses

the field of parameter identification [4]. Similar techniques of regression used in general

machine learning are used in a structured manner leveraging knowledge of the model

topology. The field of parameter identification extends far beyond robotics into almost

all scientific fields including economics [5].

Unmodeled Dynamics and Model Errors

Models are inherently simplified representations of the physical reality; thus it is virtually

impossible to completely capture all effects. At the extreme end, a complete model of

physics would require the incorporation of principles down to microscopic interactions

such as van der Waals forces, which is clearly unreasonable. So as simplifications, the

model predictions will always contain some error due to unmodeled effects. Friction is a

classic case where a number of empirical and principled models exist, including parametric

models, but each has a vastly different structure.

For robots, some of these model errors may be reasonable to recover. An example

of such would be automatically realizing the difference between a two and three link

robot arm. Other errors may only be realized through the unstructured machine learning

techniques previously mentioned. In many cases, the mechanism of feedback is relied on

to complete a task despite these types of errors. This leads to the field of robust control

which attempts to design controllers which will function with guarantees on quantities

such as stability despite unstructured errors in the models [6].
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Numerical Errors

Models of physical systems attempt to predict behavior over time, which is continuously

evolving. Although the underlying mathematical models can be described using continu-

ous differential equations, the solutions to these equations rarely admit analytic solutions.

Therefore, numerical methods are required to find approximate solutions to the models

over time. These numerical methods discretize time into a series of time steps and solve

for the updated model state at each successive time step. Since these solutions are approx-

imations, errors from the integration method itself can appear in the predicted system

behavior depending on the time step used; however, too small of a time step can result in

high computational load when simulating the system.

A number of different numerical methods exist for solving or simulating these mod-

els. Some common integrators include Euler and Runga-Kutta methods which directly

discretize the equations of motion from the model. Euler integration is only accurate

to the first order linearization of the model, which can result in model error. Runga-

Kutta methods can have varying order, though a 4th order Runga-Kutta scheme is most

commonly used. For mechanical systems, structured integrators also known as geometric

integrators can offer even better results than standard methods. One such structured

integrator is the Variational Integrator which derives a discretization of the dynamics

from first principles [7]. This results in a symplectic method which is one that preserves

a conserved quantity called the Hamiltonian over time. The Hamiltonian of a mechanical

system corresponds to the total energy of the system. Work by Schultz and Murphey has

demonstrated that using these structured integrators can improve the model prediction

and performance of the robotic system [8,9].



18

In this thesis, parameter error and numerical error will be the focus while leaving the

unmodeled dynamics to the feedback controller or other forms of control synthesis.

1.1. Experimental Design in Dynamical Systems

With regard to the parameter estimation problem, an area of extensive focus will be the

experimental design of trajectories to estimate uncertain model parameters. In order to

refine estimates of model parameters, one must generate an experiment to collect data

which can be used to tune the parameter set. For the control of dynamical systems,

this experiment involves the design of a trajectory which will be executed. During the

trajectory execution, observations are compared against the model prediction and errors

may be reduced by refining the parameter estimates. However, it is critical to note

that not all trajectories are equal in this process. Certain maneuvers will provide better

estimates of parameters than others. Once again, people develop an intuition to generate

appropriate trajectories which provide information about uncertain parameters. As an

example, when driving in the winter, it is desirable to know if the road is icy. A general

response is to test the brakes, quickly decelerating the vehicle to test for slip. In this

case, a deceleration trajectory will provide more information about road friction than a

constant velocity trajectory.

In the same manner, it is useful to encode the ability to create informative experi-

mental trajectories in robotic systems. Given the model structure, trajectories can be

optimized such that they provide the best probability of accurately estimating param-

eters. This problem has evolved into the field of optimal design which includes a wide

range of techniques including Persistent Excitation and Dual Control [10–12]. Using a
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quantity called Fisher Information, an optimization problem can be created to determine

desirable trajectories for parameter estimation in dynamical models.

1.2. Contributions and Thesis Outline

The primary contributions of this work include the derivation and experimental validation

of several methods of information-based optimization using variational techniques. There

has been significant work in both the field of optimal control for trajectory tracking and

the estimation community. This work pulls heavily from both areas in an attempt to

leverage the algorithmic foundations developed in both communities. The following are

brief highlights of the remaining six chapters of this thesis and the specific contributions

from each.

Chapter 2 aims to provide a sufficient introduction to the many mathematical concepts

brought together throughout the thesis. The chapter begins with a brief overview of

information-based metrics, of which Fisher information will be critical in the derivations

to follow. An overview of parameter estimation follows, including the relationship to state

estimation and filtering. Section 2.3 presents the optimal control theory and algorithms

that will serve as the foundation to the algorithms developed in Chapters 4, 5, and 6.

Finally, the chapter concludes with an introduction to discrete mechanics which is a

fundamental component of the following chapter.

Chapter 3 serves as a case-study in simulation, motivating the focus on numerical

methods and parameter estimation in the remainder of the thesis. A biomechanical model

of the upper limb is discussed, and results from continuous and structured numerical
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methods are presented. Additionally, parametric results are discussed, motivating the

need for optimal trajectory synthesis in experiment design.

In Chapter 4, an algorithm is developed to optimize trajectories to improve estima-

tion of model parameters. The results in this chapter are developed using continuous-time

theory for two objectives. The first, presented in Section 4.2, optimizes the trajectory to

maximize a metric on Fisher information to attempt to provide better precision in the

estimation of a set of parameters. A lower bound on the estimator precision is related

to Fisher information by the Cramer-Rao bound which is introduced in Chapter 2. The

algorithm and subsequent results using a cart-double pendulum system are also published

in [13,14]. The second contribution focuses on improving the convergence rate of the es-

timator by optimizing the trajectory to provide better conditioning of the estimator. This

algorithm is experimentally validated with results from a single cart-pendulum system.

The results and algorithm are also published in [15,16].

Chapter 5 takes the Fisher information maximization algorithm from the previous

chapter and provides a parallel derivation using discrete mechanics. The results demon-

strate a faster algorithm using a larger simulation time step, supporting the observations

from the biomechanical case-study. The same double-cart pendulum system is used as

a comparison of continuous and discrete optimization techniques. The algorithm and

results are published in [17] as well.

Leveraging a recently developed algorithm by Ansari and Murphey [18], Chapter 6

takes the concepts used to develop the previous information optimization algorithms and

creates an algorithm which is capable of real-time execution. The result is an itera-

tive learning algorithm which simultaneously optimizes the experimental trajectory in a
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receding-horizon fashion while providing parameter updates from an on-line least-squares

estimator. Experimental trials using a Baxter Research Robot with a suspended payload

are presented and also published in [19].

The thesis concludes in Chapter 7 with a discussion of the results from this work. Since

a variety of algorithms are developed throughout this thesis, the trade-offs and criteria

for selecting each algorithm for varying applications are also presented along with future

research directions.
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CHAPTER 2

Background

Since this thesis focuses on the nexus of estimation theory and trajectory optimization

with respect to systems defined both in continuous and discrete mechanics forms, this

chapter introduces the mathematical and algorithmic concepts as well as context for the

techniques used in the remainder of the thesis. As a complete background on estimation

theory and trajectory optimization are works unto themselves, the goal of this chapter

is to provide consistent notation while introducing specific aspects of each area that are

relavant to the remaining chapters.

The chapter begins with the definitions of important metrics in Information Theory

and Statistics, including Fisher information, which will be the basis for developments

in the remainder of the thesis. Section 2.2 presents the estimation algorithms used in

this thesis and the relationship and context of parameter estimation to state estimation,

including a discussion on the Kalman filter. Section 2.3 provides a background on tra-

jectory optimization with a detailed introduction into the projection-based optimization

approach used in Chapter 4 and the Sequential Action Control method used in Chapter 6.

Lastly, Section 2.4 presents an overview of modeling systems using a discrete mechanics
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approach and the framework for the projection-based trajectory optimization in discrete

time which is used in Chapter 5.

2.1. Information Theory and Statistics Metrics

In sweeping terms, information theory encompasses a vast array of disciplines including

finance, applied mathematics, computer science, and control theory. In robotics, infor-

mation theory has been fundamental in the development of state estimation and optimal

filtering techniques and continues to be a core concept in emerging areas such as symbol

and natural language processing. In particular, two notions of information have domi-

nated the field: Shannon information and Fisher information.

2.1.1. Shannon Information

When the term information theory is discussed, it is commonly referring to Shannon in-

formation. The field is defined by a single paper written by Claude Shannon in 1948

- “A Mathematical Theory of Communication” [20]. This work provides the theory to

encode any signal into a set of bits which can be reconstructed after transmission. Ad-

ditionally, quantitative analyses can be performed to minimize the loss of information

during transmission and provide mechanisms for error correction to prevent corruption of

signals. From this work, two basic measures of information emerged - entropy and mutual

information.

Entropy is a means of encoding the expected uncertainty in a signal (represented by a

random variable). Given a continuous probably density function (PDF), the entropy can
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be written as

S(ρ) = −
∫ ∞
−∞

ρ(x) log ρ(x)dx,

where ρ(x) is the probability distribution of random variable x.

On the other hand, mutual information represents uncertainty that is common to two

different random variables. Given a joint PDF of the two variables, the mutual information

is given by ∫ ∞
−∞

∫ ∞
−∞

ρ(x1, x2) log
ρ(x1, x2)

ρ(x1)ρ(x2)
,

where ρ(x1, x2) is the joint distribution of the two random variables (x1, x2).

In many applications such as clustering techniques and developing prediction methods,

it is useful to maximize the mutual information of two random variable to try to maximize

the dependence of the variables [21]. This is related to the maximization of information

with respect to estimation; however, Fisher information has been the primary metric in

terms of estimation and statistics which is presented in the following section.

2.1.2. Fisher Information

Another important metric, particularly used in the estimation and statistical analysis

community, is Fisher information. As opposed to information-theoretic quantities like

Shannon information which present global measures of uncertainty in a random variable,

Fisher information is a local measure which is closely related to the relative entropy

between an output variable and underlying parameter.

At the core of the Fisher information quantity lies the likelihood function. The likeli-

hood is defined as the probability of a set of observed outcomes given a set of parameter
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values, i.e.

L(θ|y) , ρ(y|θ),

where θ is the parameter set and y is the set of observed random variables.

Fisher information is defined as the variance of the score function, a quantity in

statistics defined by the first derivative of the log-likelihood function. The score is thus

denoted by

V (θ) ,
∂

∂θ
logL(θ|y) =

∂
∂θ
L(θ|y)

L(θ|y)
.

The first moment of the score can be shown to be zero by

E

[
∂
∂θ
L(θ|y)

L(θ|y)

∣∣∣∣∣θ
]

=

∫ ∂
∂θ
L(θ|y)

L(θ|y)
L(θ, y)dy =

∂

∂θ

∫
L(θ|y)dy = 0

since the integral of the likelihood function is always equal to 1. The variance, or second

moment, then provides the Fisher information, I(θ),

I(θ) = E

[(
∂

∂θ
logL(θ|y)

)2
∣∣∣∣∣θ
]
.

Assuming minimal regularity conditions, Fisher information can be written in terms of

the second derivative of the log-likelihood function

I(θ) = −E
[
∂2

∂θ2
logL(θ|y)

∣∣∣∣θ] .

2.1.3. Cramer-Rao Lower Bound

An important proof in estimation theory, which will be central to the results in thesis is

the Cramer-Rao bound first derived by C. Rao in 1945 [22]. The result shows that the
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variance of the parameter estimate provided by an unbiased estimator must be greater

than or equal to the inverse of the Fisher information. Despite being only a lower bound

on the covariance, in many simplified cases where the noise is assumed to be Gaussian,

the bound is strict, and the estimator is called efficient [23]. The following is a simplified

proof adapted from [24] for a single parameter and measurement which can be further

generalized to multiple parameters and Gaussian measurements.

For an unbiased estimator, θ̂, using the Cauchy-Schwarz inequality and the fact that

cov(V, θ̂) = cov(V θ̂) since E(V ) = 0,

var(V )var(θ̂) ≥ cov(V, θ̂)2

E[(V − E[V ])2] · E[(θ̂ − E[θ̂])2] ≥ E
[
(V − E[V ])(θ̂ − E[θ̂])

]2

E[V 2 − 2V E[V ] + E[V ]2] · var(θ̂) ≥ E[V θ̂ − E[V ]θ̂ − V E[θ̂] + E[V ]E[θ̂]]2.

Since the expectation of the score, E[V ] = 0 as previously noted, the equation simplifies

to the following

E[V 2] · var(θ̂) ≥ E[V θ̂ − V E[θ̂]]2

I(θ) · var(θ̂) ≥
(
E[V θ̂]− E[V ]E[θ̂]

)2

I(θ) · var(θ̂) ≥ E[V θ̂]2.
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Substituting the definition of the expectation into the right hand side results in the fol-

lowing equation

I(θ) · var(θ̂) ≥

 ∞∫
−∞

∂
∂θ
L(θ|y)

L(θ|y)
g(y)L(θ|y)dy

2

I(θ) · var(θ̂) ≥

 ∂

∂θ

∞∫
−∞

θ̂(y)L(θ|y)dy

2

I(θ) · var(θ̂) ≥
(
∂

∂θ
E[θ̂]

)2

.

Since the estimator is assumed to be unbiased, E(θ̂) = θ, and thus

I(θ)var(θ̂) ≥ 1.

Therefore,

var(θ̂) ≥ 1

I(θ)
.

In the case of a parameter vector with multiple unknowns, the Fisher information

metric can be represented as a matrix quantity. The Cramer-Rao bound then becomes

(2.1) cov(θ̂) ≥ I(θ)−1.

To create a metric from the Fisher information matrix, various optimality metrics can

be used, including A-, D-, and E-optimal designs. The use of these metrics are discussed

in further detail in Chapter 4.
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2.1.4. Summary

The field of information theory continues to progress with recent developments concerning

the relationships and connections between various information quantities such as mutual

information and Fisher information [25,26].

Since the scope of this thesis focuses on the development of trajectories in the context of

estimation and filtering, Fisher information coupled with maximum likelihood estimation

will serve as the primary tool driving the work. The following section continues to expand

on the role of information in estimation and filtering with a survey of several classical

estimators and filtering techniques.

2.2. Estimation and Filtering Overview

While the contributions in this thesis are limited to fixed parameter estimation prob-

lems, this section will give an overview of those estimation methods as well as provide

background on extensions and relations to time-varying parameter and state estimation

problems, which are natural extensions to the work in this thesis.

2.2.1. Nonlinear Least-Squares Estimation

The goal of a least-squares estimation problem is to fit a vector of observations y with

a model containing a vector of unknown parameters θ. A least-squares cost is used in

evaluating the model fit to an estimate of the parameter vector. This method is equivalent

to maximum likelihood estimation in the case of Gaussian noise [23]. Using a set of mea-

surements, nonlinear least-squares estimation can be performed using a gradient descent
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method, Iterated Least-Squares quasi-Newton approach, or a full Newton-Raphson search

method.

For any of these approaches, the nonlinear least-squares method assumes a system

model and observer

ẋ(t) =f(x(t), u(t), θ)(2.2)

y(t) =g(x(t), u(t), θ) + wy

where x ∈ Rn defines the system states, y ∈ Rh defines the measured outputs, u ∈ Rm

defines the inputs to the system, θ ∈ Rp defines the set of model parameters to be

estimated, and wy is additive output noise where p(wy) = N(0,Σ).

The least-squares estimator can be written as

θ̂ = arg min
θ
β(θ)(2.3)

where

(2.4) β(θ) =
1

2

tf/dt∑
i

(ỹ(ti)− y(ti))
T · Σ−1 · (ỹ(ti)− y(ti)).

ỹ(ti) is the observed state at the ith index of tf/dt measurements, Σ ∈ Rh×h is the

covariance matrix associated with the sensor measurement error, and θ̂ is the least-squares

estimate of the parameter set.

2.2.1.1. Gradient Descent Method. Gradient descent techniques are commonly used

in optimization problems due to their simplicity and that only the first derivative of the
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objective function needs to be calculated. The first derivative can be found by differenti-

ating (2.4) with respect to θ, resulting in the following equation:

(2.5)
d

dθ
β(θ) =

tf/dt∑
i

(ỹ(ti)− y(ti))
T · Σ−1 · Γθ(ti)

where Γθ represents d
dθ
g(x, u, θ) given by

Γθ(ti) =Dxg(x(ti), u(ti), θ) ·
d

dθ
x(x(ti), u(ti), θ)

+Dθg(x(ti), u(ti), θ).(2.6)

This equation requires the evaluation of d
dθ
x(x(ti), u(ti), θ) of (2.2), which is computed

by the following ordinary differential equation (ODE):

(2.7) ψ̇(t) = Dxf(x(t), u(t), θ) · ψ(t) +Dθf(x(t), u(t), θ),

where

ψ(t) =
d

dθ
x(x(t), u(t), θ) ∈ Rn×p and ψ(0) = {0}n×p.

The estimation algorithm is applied as shown by Algorithm 2.1. An Armijo back-

tracking line-search is used at every iteration to ensure that the new parameter estimate

sufficiently decreases the least-squares cost [27].

With respect to algorithm convergence, gradient descent optimization ensures con-

vergence to a local minimizer; however, the rate of convergence can be extremely slow

in practice. Given a strongly convex least-squares problem, it has been shown in prior
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Algorithm 2.1 Gradient Descent Parameter Estimation

Choose initial θ0 ∈ Rp, tolerance ε

while d
dθ
βp(θi) > ε do

di = − d
dθ
βp(θi) from (2.5)

Compute γi using Armijo backtracking search

θi+1 = θi + γidi

i = i+ 1

literature [28] that the error of the parameter estimates follows

‖θi+1 − θ∗‖
‖θi − θ∗‖

≤
(
λn − λ1

λn + λ1

)
,

where λn and λ1 are the respective maximum and minimum eigenvalues of the Hessian of

β. This result indicates that as the condition number κ = λn/λ1 increases, the convergence

rate of the gradient descent algorithm degrades.

2.2.1.2. Iterated Least-Squares Method. Since gradient descent-based optimization

has slower convergence with increasingly ill-conditioned problems, Hessian-based methods

may be used to improve convergence rates. The Iterated Least-Squares method uses an

approximation of the Hessian to perform a quasi-Newton type optimization [23]. For the

Iterated Least Squares method, the parameter estimate update is given by the following,

(2.8) θi+1 = θi +

tf/dt∑
i

Γθ(ti)
T · Σ−1 · Γθ(ti)

−1

· d
dθ
β(θi)

To show how one obtains the approximate Hessian used in (2.8), the full Hessian

matrix will be derived in a similar manner to the first derivative. Taking the derivative
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of (2.5) results in the following:

d2

dθ2
β(θ) =

h∑
i

Γθ(ti)
T · Σ−1 · Γθ(ti) + (ỹ(ti)− y(ti))

T

· Σ−1 ·
[
Dxg(·) · d

2

dθ2
x(·) +D2

xg(·) · ψ(ti) +D2
θg(·)

]
.(2.9)

To calculate the exact Hessian, a second differential equation for d2

dθ2
x must be cal-

culated; however, near the optimal parameter set, E[θ̂], (ỹ(ti) − y(ti)) ≈ 0. Therefore,

assuming that the estimated parameters are near the optimal set, the Hessian is approx-

imated as

(2.10)
d2

dθ2
β(θ) ≈

h∑
i

Γθ(ti)
T · Σ−1 · Γθ(ti).

Although the Iterated Least-Squares algorithm improves convergence rates near the

optimal parameter set compared to the gradient descent method, for highly ill-conditioned

problems, undesirable convergence rates may exist.

2.2.1.3. Newton-Raphson Search Method. For exact second-order convergence re-

sults, Newton’s method with a backtracking line-search can be used to find optimal pa-

rameter values. The Hessian is computed from (2.9), and in this case, the formulation for

the Hessian requires the evaluation of d2

dθ2
x(·).



33

This term is given by the following ODE:1

Ω̇(t) =
[[
D2
xf(·) · ψ(t) +DθDxf(·)

]T(1,3,2) · ψ(t)
]T(1,3,2)

+Dxf(·) · Ω(t) +DxDθf(·) · ψ(t) +D2
θf(·),

where

Ω(t) =
d2

dθ2
x(·) ∈ Rn×p×p and Ω(0) = {0}n×p×p.

Given this second order differential equation, the parameter estimate update is given

by the following,

(2.11) θi+1 = θi +

[
d2

dθ2
β(θi)

]−1

· d
dθ
β(θi).

Using the Hessian results in second-order convergence of the parameter update com-

pared to first-order convergence for gradient descent and between first and second-order

convergence for the ILS method.

2.2.2. Minimum Mean-Square Error Estimation

In the least-squares estimation problem, the parameter values are not assumed to be

random variables, simply unknowns. The problem of estimating random variables from

uncertain measurements is handled by a minimum mean-square error estimator.

Given two random vectors which are jointly Gaussian, the estimate of x, the variable

to be estimated, given the measurement vector y is given by the conditional mean E[x|y].

1Since the equation for Ω(t) involves tensors, we will use the notation [·]T(1,3,2) to indicate a transpose of
the 2nd and 3rd tensor dimensions.



34

In the case of joint Gaussians, the conditional mean of the estimate x̂ is given by

(2.12) x̂ , E[x|y] = x̄+ ΣxyΣ
−1
y (y − ȳ),

and the conditional covariance matrix is given by

(2.13) Σx|y , E[(x− x̂)(x− x̂)T |y] = Σx − ΣxyΣ
−1
y Σyx,

where x̂ and ŷ are the mean values of the estimated random variable and the measurements

respectively.

In the case of linear, or linearized systems, the minimum mean-square error estimator

(MMSE) for a Gaussian random variable with zero mean is equivalent to the least-squares

estimator. This is due to the fact that the Gaussian system provides a linear estimate for

the MMSE, which is exactly the same as the constrained linear least-squares estimator.

The relationship of least-squares estimation to the MMSE can be readily seen com-

paring the gradient descent update (2.5) to the MMSE update (2.12). Assuming a single

measurement and full Armijo step, the gradient descent update can be written as

(2.14) θi+1 = θi + Γθ(ti) · Σ−1 · (ỹ(ti)− y(ti))
T .

The previous estimate serves as the mean x̄ with the derivative of y w.r.t. the parameters

encoding the coupling of the variables. In the MMSE, this coupling is given by the cross-

covariance Σxy. The next section takes one more step forward in relating static parameter

estimation to the time-varying state estimation problem which can be computed with the

Kalman filter.
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2.2.3. State Estimation and the Kalman Filter

The Kalman filter is a fundamental algorithm which provides a solution to the state

estimation problem for linear systems. Instead of working on static parameters, the filter

provides an estimate for the states of the system which can be viewed as time varying

random variables. Despite this difference, the concepts of minimum mean-square error

estimation are relevant and useful in the derivation of the filter.

Each iteration of the Kalman filter algorithm consists of mapping a state estimate and

associated covariance matrix to the next point in time. We focus on the discrete time case

for purposes of the comparison to parameter estimation. Given a linear dynamic system,

the discrete update equations are

xk+1 =Fkxk +Gkuk + vk

yk =Hkxk + wk

where vk and wk are zero-mean noise signals with covariances Qk and Rk respectively.

Starting with the mean θ̄ of (2.12) and covariance Σx of (2.13), the corresponding

terms in the Kalman filter are the predicted state and covariance from the linear system,

x̄→ x̂k+1|k = Fkx̂k|k +Bkuk

Σx → Pk+1|k = FkPk|kF
T
k +Qk

with the measurement mean ȳ corresponding to the predicted measurement,

ȳ → ŷk+1|k.
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The measurement covariance Σy corresponds to the predicted measurement covariance

in the Kalman filter with the following

Σy → Sk+1 = Hk+1Pk+1|kH
T
k+1 +Rk+1,

and the predicted covariance between the state and measurement is given by

Σxz → Pk+1|kH
T
k+1.

Therefore, the updated state estimate x̂ given a new measurement yk+1 follows the form

of (2.12) with

(2.15) x̂→ x̂k+1|k+1 = x̂k+1|k + Pk+1|kH
T
k+1S

−1
k+1(yk+1 − ŷk+1|k).

The covariance update follows (2.13) with

Σx|y → Pk+1|k+1 = Pk+1|k − (Pk+1|kH
T
k+1)S−1

k+1(Pk+1|kH
T
k+1)T .

The quantity Pk+1|kHT
k+1S

−1
k+1 is referred to as the Kalman gain since it is the optimal

weight on the measurement residual in (2.15) to update the state estimate.

The takeaway from the Kalman filter comparison is that state estimation can be

viewed as a form of recursive parameter estimation, only the parameters are states which

are time-varying. The opposite view is likewise true, that parameter estimation can be

performed as state estimation, though static parameters should be treated as static states,

i.e. the predicted state update will be equivalent to the previous state.
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This notion provides a means of extrapolating methods for static parameter estimation

studied in this thesis to time-varying parameters and state-based forms. Though outside

the scope of this thesis, the relationship is important and discussed as future work in

Chapter 7.

2.3. Trajectory Optimization and Optimal Control

Trajectory optimization is a common problem in the field of optimal control. The goal

is determine a time-varying set of controls for a dynamic system that minimize a certain

objective function. Typically in a trajectory tracking problem, the cost is represented by

a running cost that is a function of state and control input and a terminal cost on the

state. This cost function can be represented as

(2.16) J =

tf∫
t0

l(x(t), u(t), t)dt+ s(x(tf ))

with the system dynamics constraining the state evolution as

ẋ(t) = f(x(t), u(t)).

A variety of techniques are used to solve these types of control problems; however, nu-

merical solution methods generally are categorized as either indirect or direct methods.

Direct methods of optimal control involve parameterizing the dynamics and cost func-

tion of the problem in a manner that can be formulated as a non-linear programming

problem (NLP). NLP problems can be solved using a variety of optimization algorithms

including active-set methods such as SQP and BFGS or a trust-region method [28]. Direct
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methods provide a relatively straightforward optimization implementation with a number

of commercially available software tools. The disadvantages of direct methods lie in the

parameterization of the problem which can lead to infeasible trajectories if the dynamics

are coarsely parameterized or very high dimensional optimization problems which can be

unreasonable to solve.

Indirect methods of optimal control attempt to directly solve the optimization prob-

lem with respect to the differential equation constraint. Generally, indirect methods are

formulated using the calculus of variations, resulting in two-point boundary value prob-

lems. Pontryagin’s Maximum Principle is a classical result using variational calculus to

produce the optimal controls given state and control constraints [29]. While the indirect

techniques can maintain a low dimensional state, solutions for the boundary value prob-

lem are not universal and can be difficult to solve, even numerically, depending on the

system.

Given these trade-offs, the results in this thesis rely on two optimal controls methods

as the basis upon which the information optimization is built. Section 2.3.1 describes

the projection-based optimization approach developed by Hauser [30] and extended to

discrete mechanical systems by Johnson and Murphey [31] which is used in Chapters 4

and 5. This algorithm leverages indirect solutions to linear quadratic control problems

in an iterative framework. Section 2.3.2 provides an overview of the Sequential Action

Control method used in Chapter 6. This method provides a fast way to compute the

current control action based on future dynamics in a receding-horizon fashion.
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2.3.1. Projection-based Trajectory Optimization

The projection-based approach for trajectory optimization tackles the problem of provid-

ing optimal control solutions using variational calculus while generalizing the methods for

any nonlinear system. The premise of the algorithm involves the iterative linearization

around a current trajectory followed by an optimal perturbation solution based on LQR

techniques with a constraint projection. The original formulation of the algorithm in

continuous time is presented in [32] and the discrete formulation can be found in [33].

This section serves a basic introduction to the algorithm which is used throughout the

examples in this thesis.

We define T to be the set of admissible trajectories for a dynamic system, i.e., trajecto-

ries that satisfy the dynamics constraint equations. The space of trajectories is embedded

in an inner product space V such that T ⊆ V . Therefore T = {η = (x(t), u(t)) ∈ V :

ẋ(t) = f(x(t), u(t), t)} where η denotes a feasible trajectory.

Given an initial trajectory ξ0 = (x(t), u(t)), the optimization problem can be defined

as

η∗ = arg min
η∈T

J(η)

where J(η) is defined by (2.16).

In the case of trajectory tracking, it is common to have a quadratic norm on the state

error using a running and terminal cost. This results in the following terms of J(η)

l(x(t), u(t), t) =(x(t)− xd(t))T ·Q(t) · (x(t)− xd(t)) + u(t)T ·R(t) · u(t)

s(x(tf )) =(x(tf )− xd(tf ))T ·Q(tf ) · (x(tf )− xd(tf ))
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Algorithm 2.2 Trajectory Optimization

Initialize η0 ∈ T , tolerance ε, k = 0

while DJ(ηk(t)) ◦ ζk > ε do

Calculate descent, ζk:

ζk = arg minζk(t) DJ(P(ξk(t))) ◦ ζk + 1
2
〈ζk, ζk〉

Compute γk with Armijo backtracking search

Calculate the infeasible step:

ξk(t) = ηk(t) + γkζk

Project trajectory onto dynamics constraints:

ηk+1(t) = P(ξk(t))

k = k + 1

where Q is positive semi-definite matrix, and R is a positive definite matrix which may

both be a function of time. This cost will optimally track a desired path even if the path

is not dynamically feasible.

Since the constrained optimization problem presents difficulties in direct solutions, it

is advantageous to relax the dynamics constraints, solve an unconstrained optimization

problem, and then use a projection operator to project the solution to a nearby feasible

trajectory. The main steps of the optimization algorithm are shown in Algorithm 2.2.

2.3.1.1. Projection Operator. The projection operator uses a stabilizing feedback law

to take a feasible or infeasible trajectory, defined by ξ(t) = (α(t), µ(t)), and maps it to

a feasible trajectory, η(t) = (x(t), u(t)). The local, iterative approach to the algorithm

allows the use of projection operators that are only locally stabilizing rather than requiring

global stability.

While any stabilizing feedback law will suffice, the work in this thesis uses the solution

to an LQR optimal control problem as the feedback regulator. The form of the projection
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operator then becomes

P (ξ(t)) :

 u(t) = µ(t) +K(t)(α(t)− x(t))

ẋ(t) = f(x(t), u(t)).

The feedback gain K(t) can be optimized as well by solving an additional linear quadratic

regulation problem. Details of the optimal gain problem can be found in [32], but any

stabilizing feedback may be used.

With the addition of the projection operator, the problem can be reformulated from

an optimization over the constrained trajectory η(t) to an optimization over the uncon-

strained trajectory ξ(t). This relation is given by

arg min
η(t)

J(η(t)) ←→ arg min
ξ(t)

J(P(ξ(t))).

The unconstrained formulation allows variations of the trajectory to be calculated free of

the constraint of maintaining feasible dynamics; however, the solution is projected to a

feasible trajectory at each iteration of the optimization algorithm.

2.3.1.2. Calculating the Descent Direction. In the iterative optimization algorithm

shown in Algorithm 2.2, a descent direction ζ must be computed based on the lineariza-

tions around the current trajectory ξk. This is achieved by minimizing a local quadratic

approximation of the cost function. This approximation can be represented as

(2.17) ζ∗k = arg min
ζ∈TξkT

DJ(P(ξk)) ◦ ζk +
1

2
〈ζk, ζk〉,
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where ζ = (z, v) is constrained to the linearized dynamics,

(2.18) ż(t) = A(t)z(t) +B(t)v(t)

and ζk(t) ∈ TηkT , i.e., the descent direction for each iteration lies in the tangent space of

the trajectory manifold at ηk. The components of the descent direction ζk = (z(t), v(t))

are defined by z(t), the perturbation to the extended state, and v(t), the perturbation

to the control. The quantity 〈ζk(t), ζk(t)〉 is a local quadratic model computed as an

inner product of ζk(t). Matrices A(t) and B(t) are the linearizations of the dynamics.

Since (2.17) is a quadratic function of ζk with linear constraints, the descent direction can

be solved as a time-varying LQ problem which depends on the linearization of the cost

function, DJ(P (ξk(t))), and the local quadratic model, 〈ζk(t), ζk(t)〉.

Applying a quadratic model and expanding the linearizations of the cost function,

(2.17) can be rewritten as

arg min
ζk

=

tf∫
t0

a(t)T z(t) + b(t)Tv(t) +
1

2
z(t)TQnz(t) +

1

2
v(t)TRnv(t) dt

+ rT1 z(T ) +
1

2
z(T )TQT z(T ),(2.19)

where a(t), b(t), and r1 are the linearizations of the cost function with respect to x and u,

and Qn, QT , and Rn are weighting matrices for the local quadratic model approximation.

Design of these weighting matrices can lead to faster convergence of the optimal control

algorithm depending on the specific problem.

The LQ problem can be solved with three Ricatti equations resulting in an affine

feedback law minimizing (2.19).
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2.3.1.3. Backtracking Line-Search. Given the descent direction ζk, a backtracking

line-search of the projection, P (ηk(t) + γkζk), provides a feasible trajectory assuming the

step size γk satisfies the Armijo sufficient decrease condition [27]. Iterations upon the

feasible trajectories continue until a given termination criteria is achieved.

2.3.2. Sequential Action Control

The SAC control synthesis process follows a receding-horizon style format to sequence

together separately short optimal control actions into a piecewise continuous constrained

feedback response to state. In SAC, actions are defined by a pair composed of a control

vector value and its associated (typ. short) application duration which is computed for

each action. The blue shaded region in Fig. 2.1 shows a SAC action for a 1-D control.

The algorithm iterates on the following 4-step process to synthesize each action:

2.3.2.1. Predict. The SAC algorithm predicts system motion from current state feed-

back, x(t0) = x0. The process involves simulation of a state and adjoint system (x, ρ)

for a fixed time horizon, T , until (receding) final time tf = T + t0. For the purposes of

this paper, the nominal control value used for simulations (x, ρ) is u = 0 so that SAC

computes optimal actions relative to the free (unforced) system motion.

The cost function for SAC is given by

(2.20) Jcost =

∫ tf

t0

l(x(t)) dt+ s(x(tf )),

where

l(x(t)) = x(t)T ·Qτ · x(t),
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i.e., the running cost involves minimization of the inverse of the information and an

optional trajectory tracking cost to bias the system toward a particular part of the state

space.

The adjoint variable ρ : R 7→ Rn provides information about the sensitivity of the

cost function to the state, x. The algorithm maps this sensitivity to a control sensitivity

provided by an inner product between the adjoint and dynamics (2.2). The process of

control synthesis uses this sensitivity, dJcost
duτ

, to search for least norm actions that optimize

the expected change in cost (2.20). Thus SAC actions optimize the rate of trajectory

improvement. These optimal actions depend directly on the adjoint, which is determined

from open-loop simulation of the following equation,

ρ̇ = −Dxl(x)T −Dxf(x, u)Tρ

with a terminal condition ρ(tf ) = ∇s(x(tf )).

2.3.2.2. The Value of Optimal Action. After simulating the open-loop system (x, ρ)

under nominal control, SAC computes the value of actions that it should apply to op-

timally improve nominal trajectory cost (2.20). Because SAC has not yet decided on a

time, τ , specifying when to act,2 it searches for a curve u∗ that provides the value of the

optimal action it should apply as a function of time. The algorithm will search this curve

to determine the best (optimal) time to act. The entire curve that provides the value of

the optimal actions that maximize trajectory improvement is provided analytically from

2Each cycle of control synthesis assumes SAC will specify / search for an optimal time to act between
the current time, t0, and the end of the prediction horizon, tf .
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Figure 2.1. SAC actions for a 1-D control are sequenced in receding-horizon fashion.

the expression,

(2.21) u∗ = (Λ +RT )−1 h(x)Tραd

with Λ , h(x)TρρTh(x) [18].

As opposed to traditional receding-horizon and nonlinear trajectory optimization rou-

tines, SAC actions optimally improve rather than minimize a trajectory cost over the

current horizon. The process is often less sensitive to local minima and examples in [18]

show that actions based on (2.21) actually outperform nonlinear trajectory optimiza-

tion in terms of cost and computational efficiency on a variety of benchmark nonlin-

ear control problems. Furthermore, [18] proves min/max input constraints of the form

umin,k < 0 < umax,k ∀k ∈ {1, . . . ,m}, can be applied on-line to actions from (2.21) without

added computation.
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2.3.2.3. When to Act. In application, SAC can pre-specify an action time τ = t0 so

that actions are always applied from the current time and sequenced into a piecewise

continuous, receding-horizon style response to state. However, SAC includes the option

to search for an optimal time to act. It can therefore do nothing and choose to wait

until a system “drifts”3 into a more opportune state where control effort would be better

spent. In searching for an optimal time to act, SAC optimizes an objective measuring

the cost of waiting relative to the expected efficacy of controls (2.21) in improving system

performance based on (2.20). It searches for the time, τ that minimizes the objective

Jt(τ) = ‖u∗(τ)‖+
dJcost
duτ

∣∣∣∣
τ

+ (τ − t0)γ

with γ = 1.6 and dJcost
duτ

as the measure of expected cost improvement (see [18]).

2.3.2.4. How Long to Act. The SAC algorithm computes a duration, ∆t, to apply

control action values (2.21) using a line search with simple descent condition. The line

search process iteratively reduces an initial duration, ∆t = ∆t0, and simulates the ex-

pected cost (2.20) based on application of the control action around the application time

τ . If the current duration results in a minimum improvement in cost (relative to the nom-

inal control), it is selected and the action is fully specified based on the pair (u∗(τ),∆t).

If the action does not provide the expected cost improvement, the line search reduces

the duration and repeats. The process is guaranteed to find a duration that provides a

minimum expected improvement in cost [34].

For a more detailed derivation of SAC control synthesis with examples see [18,34].

3Under free dynamics and the nominal control u = 0.
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2.4. Discrete Mechanics

The results in Chapter 5 use a discrete mechanics framework to derive the information

optimization algorithm. The discrete mechanics framework can be particularly useful

in trajectory optimization as it provides a way to create sympletic integrator called a

variational integrator which has stable long-term energy behavior, even with large time-

steps [35]. This section provides an introduction into discrete mechanical system repre-

sentations including variational integrators.

Given a system with a configuration q ∈ Q, where Q is the configuration space,

a sequence {(t0, q0), (t1, q1), ..., (tn, qn)} can be found that approximates a trajectory in

continuous time where qk ≈ q(tk). Instead of numerically integrating differential equations

derived from a continuous Lagrangian, Lc, a discrete Lagrangian, Ld, is chosen such that

the action integral is approximated over a discrete time step

Ld(qk, qk+1, θ) ≈
∫ tk+1

tk

Lc(q(t), q̇(t), θ)dt.

The action integral can then be approximated by a discrete action sum given by

∫ tf

t0

Lc(q(τ), q̇(τ), θ)dτ ≈
kf∑
k=0

Ld(qk, qk+1, θ).
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Given the discrete action sum, the DEL equations, including forcing, have been derived

for the discrete-time system [7]. The unconstrained DEL equations are given by4

D2Ld(qk−1, qk, θ) + F+
d (qk−1, qk, uk−1, θ)+

D1Ld(qk, qk+1, θ) + F−d (qk, qk+1, uk, θ) = 0.

where F±d are the right and left discrete force approximations of a continuous forcing

model, Fc. For clarity, the arguments to the discrete Lagrangian will be dropped and the

indices will be referred to using the following subscript notation,

Lk+1 = Ld(qk, qk+1, θ)

F±k+1 = F±d (qk, qk+1, uk, θ).

In order to create a suitable analog to the continuous time framework, the DEL equa-

tions can be rewritten in a one-step map using a discrete momentum term, pk. The first

equation is implicit in terms of qk+1 and is solved using a root-finding algorithm. The

following is the one-step update of {qk, pk+1}

pk +D1Lk+1 + F−k+1 = 0

pk+1 = D2Lk+1 + F+
k+1.(2.22)

4The slot derivative notation, Dκα(x, y, z) represents the partial derivative of α w.r.t the κth argument.
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Therefore the discrete states, xk are of the form

xk =

 qk

pk

 .

2.4.1. Variational Integrators

In order to solve the DEL equations, the discrete Lagrangian and discrete forcing functions

must be specified. A variational integrator is created by specifying the approximation

used to convert the continuous-time Lagrangian to a discrete-time analog. For the scope

of this paper, the most common form with midpoint approximation is used. The discrete

Lagrangian is approximated as

(2.23) Ld(q, qk+1, θ) = Lc

(
qk+1 + qk

2
,
qk+1 − qk

∆t
, θ

)
.

The discrete forcing function is chosen using the same approximation resulting in the

following discrete forces

F−d (qk, qk+1, uk, θ) = fc

(
qk+1 + qk

2
,
qk+1 − qk

∆t
, uk

)
∆t

F+
d (qk, qk−1, uk, θ) = 0.

Since the right discrete force is zero using this approximation method, the derivations

and equations in this thesis will not include the right discrete force term for simplicity;

however, if a different approximation method is used, this term may need to be added to

the derivations.
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2.4.2. Kinematic Configuration Variables

In the model used in Chapter 5, kinematic configuration variables are used when simulat-

ing and optimizing the system. For certain subsets of a robot model, it may be reasonable

to assume a kinematic model where the actuators are strong enough to accurately realize

any reasonable trajectory in the configuration space. For the cart-pendulum example,

the position of the cart x will be treated as kinematic, i.e., the input at any time tk will

be the position of the cart rather than the force upon the cart. While this separation is

not required or essential, it tends to simplify implementation in practice by allowing a

higher frequency, low-level controller to provide position control for the kinematic states

while running a lower frequency controller on the dynamic states. The derivation of the

optimal control algorithm with kinematic configurations and the associated derivatives

are available in [33].

To implement the kinematic configuration variables, new states are added for the

kinematic components. Thus, the state becomes

xk =



qk

ρk

pk

νk


,

where ρk ∈ Rnk is the set of kinematic configuration variables and νk ∈ Rnk is the set of

kinematic velocities. The discrete Lagrangian and discrete forces are expanded to include

these kinematic configurations; however, the solution to the equation remains the same

since the variables are predefined as inputs. The discrete Lagrangian and discrete forces
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can be written in the following manner to include the kinematic configurations

Lk+1 = Ld(qk, qk+1, ρk, ρk+1, θ)

F±k+1 = F±d (qk, qk+1, ρk, ρk+1, uk, θ).

The input vector is then defined as the force inputs uk at the current time tk and the

kinematic configuration at the next time step ρk+1 which will be notated as

ūk =

 uk

ρk+1

 .
With the introduction of all of the concepts presented in this chapter, the information-

based optimization algorithms can be developed. Before diving into the derivations and

experimental results from the algorithms, the following chapter presents a case-study on

numerical methods for biomechanical simulation and the need for trajectory optimization

for parameter estimation.
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CHAPTER 3

Continuous vs. Structured Simulation Methods

Numerical integration methods are the backbone of almost all simulation and optimal

control methods. Physical systems evolve in a continuous time domain; however, the

continuous differential equations that specify a mathematical predication of that evolution

rarely can be analytically solved in the continuous domain. Numerical methods are used

to compute approximate solutions to these differential equations for use in optimal control

solutions. It is often the case that a simple numerical method is chosen, such as an RK4

scheme presented in Section 3.1.2; however, there are many non-trivial advantages and

disadvantages to different numerical methods.

The information-based optimization methods presented in Chapters 4 and 5 are de-

rived for two different classes of numerical methods. Before presenting those methods,

this chapter will provide a case study of the differences between continuous and struc-

tured simulation methods. Additionally, this study motivates the necessity for exploration

into the question of trajectory optimization for the purposes of parameter estimation. In

this thesis, continuous simulation methods refer to algorithms that directly discretize the

continuous-time dynamics, typically derived using the Euler-Lagrange equations. Struc-

tured methods, such as the variational integrator introduced in Chapter 2, provide a
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discrete formulation of the dynamics which are derived specifically for the chosen time-

discretization. Continuous methods, which include Euler and Runga-Kutta integrators,

are typically simple to implement, and have a relatively low computation cost per it-

eration. Structured methods can involve a more unintuitive derivation of the discrete

dynamics with higher computation per iteration but may have better performance at

larger time steps.

While several studies have been presented in the literature highlighting these trade-

offs, this study focuses on the simulation of flexion and extension of the elbow in mus-

culoskeletal model of the upper limb. Biomechanical modeling is just one area where

continuous-time based integration methods are commonly used, and this work presents

the first benchmark comparison to the variational integrator, a structured integration

method.

3.1. Musculoskeletal Modeling

Rigid-body modeling has been a popular technique for forward simulation of the dynamics

of human movement. The skeletal system is treated as a set of rigid bodies connected by

joints with muscles applying moments about each joint. Muscle activation signals in the

form of electrical impulses are sent to the muscles from the brain through the nervous

system. These signals can be recorded as EMG data using surface or intramuscular

collection techniques. A challenge unique to the biomechanical modeling community is

the creation of appropriate muscle models to simulate the activation and resultant forces

produced by the muscles which act on the rigid-body skeletal model [36]. One popular

choice among biomechanics researchers is the OpenSim simulation platform [37]. This
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Figure 3.1. Diagram of the Hill muscle model. Adapted from [36].

package allows the creation of the skeletal structure as well as choice of muscle model and

forcing in the system.

These muscle models are typically derived from the Hill muscle model, shown in Fig.

3.1 which contains three elements: an elastic tendon element, elastic muscle element, and

active contractile muscle element. One such model that has been used in the OpenSim

platform is Schutte’s muscle model based on the three element Hill model [38]. In this

model, the muscle dynamics are governed by a first order dynamical system given by

(3.1) 0 = aF`(˜̀M)Fv(
˙̀̃M) + FPE(˜̀M) cosα− FT (˜̀T ),

where ˜̀M is the normalized muscle length, ˜̀T the normalized tendon length, α the pen-

nation angle, FPE the passive force length relation, FT the tendon force length relation,

Fv the active force velocity relation, F` the active force length relation, a the muscle ac-

tivation, and Fmax is the maximum contractile force. The muscle activation signal is also
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represented by a first-order dynamical system

ȧ =

 (u− a) /τdeact : u ≤ a

(u− a/ τact : u > a

where u is the muscle EMG signal and τ are the activation and deactivation constants. The

EMG data is preprocessed to provide the inputs for the model. A number of studies have

examined EMG processing techniques which will not be discussed in this chapter [39–41].

Using the Schutte model, the muscle length will serve as a state variable in addition to

the generalized coordinate states of the skeletal model. At each step of the simulation, the

skeletal and muscle states are simultaneously updated providing new moment predictions

from the muscle model.

Muscle pathways are defined by a series of points that are static relative to an assigned

bone. Each muscle is fixed at two endpoints and slides freely through additional inter-

mediate points. As the configuration of the skeletal system changes, the muscle length

will change based on the sum of the Euclidean distance between each of the points along

the pathway. The musculotendons apply forces on the bones at the attachment points,

thus affecting the configuration of the skeletal structure. The following section addresses

the computation of the muscle moments required for forward simulation of the system

dynamics.

3.1.1. Computing Muscle Moments

The muscle dynamics given by (3.1) provide a mapping from activation signals to a change

in muscle length. This change in length produces a tension force along the muscle pathway,
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producing a configuration dependent moment on the joint. One method of computing the

moment is determining the moment arm and direction of the applied force on a bone which

will determine the moment on the joint. This method requires a number of geometric

calculations which may be computationally expensive.

Alternatively, the method of virtual work provides a cleaner method of calculating the

moment. The virtual work of the muscle can be defined by the tension force multiplied

by the change in the length of the muscle pathway

∂Wmuscle = FT · d`MT ,

where `MT is the total muscle-tendon length as defined by the pathway and Wmuscle is

the work done by the muscle. Meanwhile, the work done on a joint, represented by a

generalized coordinate, is given by the moment about that joint Mjoint multiplied by the

change in the generalized coordinate

∂Wjoint = Mjoint · dq.

The work done must be equivalent for either representation, therefore

FT · d`MT = Mjoint · dq

Mjoint = FT ·
d`MT

dq
.

The derivative of the length with changes in the generalized coordinate can be easily

computed from the skeletal geometry. This provides a simpler means of determining the

applied torque to the joint at each time step of the simulation. Since the muscloskeletal
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system is redundant with several muscle acting on the same joint, different methods can

be employed to solve the force sharing problem [42]. The simulation techniques provided

in this chapter result in the minimum total muscle force solution.

3.1.2. Forward simulation with explicit integration

With the specification of the muscle model, skeletal geometry, and inertias, a forward

simulation of the upper-limb can be performed from recorded EMG signals. The equations

of motion of the skeletal structure can be solved using the Euler-Lagrange equations,

0 =
∂Lc
∂q
− d

dt

(
∂Lc
∂q̇

)
,

where Lc is a standard Lagrangian of kinetic minus potential energies.

The generalized coordinates of the skeletal system q are then added to the muscle

length states from (3.1). These equations can be written in state space form

(3.2) ẋ(t, q, q̇, `M , a) = f(t, x(t, q, q̇, `M , a)),

where

x(t, q, q̇, `M , a) =


q(t, `M)

q̇(t, `M)

`M(q, q̇, a)

 .
A standard method of forward simulation is the integration of the equations of motion

from (3.2) using an explicit Runga-Kutta scheme. Runga-Kutta integrators provide a

method for time-based discretization of the differential equations governing the dynamics.

The explicit integrator only relies on the current and past states to compute the future
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state while an implicit method is a function of the future state as well. Explicit integrators

are commonly used for their ease of implementation and speed. In the simulation results,

we will use a RK4 integrator which is a 4th order explicit Runga-Kutta scheme. The RK4

update formula is given by the following,

k1 = f (tn, xn) ∆t

k2 = f

(
tn +

1

2
h, xn +

1

2
k1

)
∆t

k3 = f

(
tn +

1

2
h, xn +

1

2
k2

)
∆t

k4 = f (tn + h, xn + k3) ∆t

xn+1 = xn +
1

6
k1 +

1

3
k2 +

1

3
k3 +

1

6
k4.

Using the EMG recordings, the activation inputs can be determined and the forward

simulation can be carried performed. The following section describes the particular model

for the elbow that is used in the simulation results.

3.1.3. Elbow Model

For the integrator comparison and simulation results to follow, the focus will be on the

motion of the elbow. From the complete upper limb model used by Saul et al. [43], eight

muscles spanning the elbow joint are used. The model also includes the full geometry

and inertias of the upper limb. A rendering of the model using the OpenSim software

platform can be seen in Fig. 3.2.
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Figure 3.2. An OpenSim rendering of the upper-limb biomechanical model
with eight muscles.

To simplify the model for the purposes of this comparison, only a single degree of

freedom in the elbow joint is used. The remaining joints are locked to a specified posi-

tion with all fingers in extension. The parameters required for the simulation of these

muscles are shown in Table 3.1 which come from a subset of those presented in [43]. Ad-

ditionally, cylindrical wrapping surfaces are used in the model for the triceps, biceps, and

brachioradialis muscles. During extension and flexion of the elbow, as these muscles come

in contact with the wrapping surface near the elbow joint, the muscle paths will wrap

around the surface. The derivation of the equations representing the wrapping surface

are presented in Appendix A.

Default normalized force-length curves for the muscle and force-strain curves for the

tendon are used. The Schutte model also defines a damping parameter for the muscle

model which is set to 0.017 N/m/s.
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Table 3.1. Muscle Parameters for Elbow Simulation

Optimal fiber Peak Tendon slack Pennation
Muscle Abbreviation length (cm) force (N) length (cm) angle (◦)

Triceps
Long TRIlong 13.4 771.8 14.3 12
Lateral TRIlat 11.4 717.5 9.8 9
Medial TRImed 11.4 717.5 9.1 9

Anconeus ANC 2.7 283.2 1.8 0
Biceps

Long BIClong 11.6 525.1 27.8 0
Short BICshort 13.2 316.8 20.0 0

Brachialis BRA 8.6 1177.4 5.4 0
Brachioradialis BRD 17.3 276.0 13.3 0

3.2. Variational Integrators and the Muscle Model

While the variational integrator has been used in the simulation of a number of rigid

body systems, both conservative and forced, it has yet to be applied to a biomechanical

model. One factor limiting direct use of the integrator is the construction of the muscle

model. Since the muscle model is not an inertial system (i.e., the muscle typically is

modeled without mass) a hybrid approach needs to be taken in order to incorporate the

variational approach into the biomechanical model. The method that is proposed in this

section is the use of the variational integrator natively on the skeletal states, which include

inertial elements, while the muscle model is solved simultaneously using an implicit Euler

integration scheme.

As introduced in Section 2.4.1, the variational integrator is an implicit integrator which

depends on the current and future state to simulate the discrete system. The integrator

is derived from the notion of generalized momentum equations which are a natural choice

for physical inertial systems; however, the muscle model lacks this variational principle
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of generalized momentum in its update equations. Therefore, since an implicit Newton-

Raphson solver is already in place to solve the variational integrator system, the natural

complement is the implicit Euler form to update the single state muscle model.

The implicit Euler scheme has also shown promise in the simulation of biomechanical

systems. A study by van den Bogert et al. used a first-order Rosenbrock method to

simulate both the rigid body dynamics and muscle model of both upper and lower limb

models [44]. The Rosenbrock method is equivalent to a midpoint implicit Euler method,

taking only one iteration of the Newton-Raphson solver per step. Results indicate good

performance from this method with improvements in the computational speed by orders

of magnitude. The addition of the variational integrator should improve the stability of

the results while maintaining the computational performance of the simulation.

3.2.1. Setting up the Variational Integrator and Muscle Model

The generalized coordinates for the skeletal system will be given by q with velocities q̇,

and the muscle states are notated as `M . The equations for the variational integrator are

derived using the discrete Lagrangian as indicated in Section 2.4.1. Using the midpoint

VI formulation, the forced DEL equations are given by

(3.3) D2Ld(qk−1, qk) +D1Ld(qk, qk+1) + F−d (qk, qk+1, uk) = 0,

since the right discrete force is equal to zero using this discretization choice. The left

discrete force is then given by

F−d (qk, qk+1, uk) = fc

(
qk+1 + qk

2
,
qk+1 − qk

∆t
, uk

)
∆t,
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Algorithm 3.1 Newton-Raphson Iterator

Initialize (qk+1, `
M
k+1) = (qk, `

M
k ), tolerance ε

while f(qk+1, `
M
k+1) > ε do

(qk+1, `
M
k+1) = (qk+1, `

M
k+1)−Df−1(qk+1, `

M
k+1)

return (qk+1, `
M
k+1)

where fc can be computed from the tendon passive force equation. Since the tendon

length, `T is the difference between the total musculotendon path length and muscle

length, the force equation can be written as

fc = −FmaxFT (˜̀MT − ˜̀M) ·D`MT .

Taking the Schutte equation and using the midpoint approximation results in the

following implicit Euler form of the muscle update,

0 =aF`

(
˜̀M
k+1 + ˜̀M

k

2

)
Fv

(
˜̀M
k+1 − ˜̀M

k

∆t

)

+ FPE

(
˜̀M
k+1 + ˜̀M

k

2

)
cosα− FT

(
˜̀T
k+1 + ˜̀T

k

2

)
.(3.4)

Taking (3.3) and (3.4) provides a system of update equations that can be simultaneously

solved using the Newton-Raphson iterator

f


 q

`M


 =

 D2Ld(qk−1, qk) +D1Ld(qk, qk+1) + F−d (qk, qk+1, uk)

Equation 3.4

 .
The Newton Raphson iterator is shown in Algorithm 3.1. As shown in the algorithm,

the derivative of f is needed at each iteration to converge on the future state. Therefore,

derivatives of both the skeletal equations and muscle equations are needed. The derivative
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Figure 3.3. Comparison of the Runga-Kutta, Opensim and Variational in-
tegrators for a 4.5 s simulation of the elbow motion from EMG activations.

of the muscle equations from (3.4) are

a

[
1

2`0
ml

DF`

(
˜̀M
k+1,

˜̀M
k

)
Fv

(
˜̀M
k+1,

˜̀M
k

)
+

1
˙̀0
M∆t

F`

(
˜̀M
k+1,

˜̀M
k

)
DFv

(
˜̀M
k+1,

˜̀M
k

)]

+
1

2`0
ml

DFPE

(
˜̀M
k+1,

˜̀M
k

)
cosα +

cosα

2`0
T

DFT

(
˜̀M
k+1,

˜̀M
k

)
,(3.5)

with the complete derivative of f given by

f


 q

`M


 =

 D2D1Ld(qk, qk+1) +D2F
−
d (qk, qk+1, uk)

Equation 3.5

 .
After setting up the iterator with the activation dynamics, a, the muscle and skeletal

states can be computed. The following section presents a comparison of this variational

integration based simulation technique with an explicit Runga-Kutta scheme.
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3.3. Simulation Results

Two algorithms are simulated and compared for the upper elbow model and also compared

against the OpenSim predicted trajectory. The first is an explicit Runga-Kutta fourth

order integrator, and the second is the variational integrator with a midpoint Euler muscle

model. Simulations are compared qualitatively at varying time steps for stability and

accuracy of the predicted motion.

Figure 3.3 shows the results of the three simulations at stable time steps. Given the

same EMG excitation signals, the motion of the elbow is similar but not exact. This

difference is likely due to a combination of integration scheme and recruitment curve

specification. For the variational integrator and RK4 integrator, the recruitment curves

are identical, leading to the integrator as the primary cause of the curve differences.

Due to the implicit nature of the variational integrator, the stiff muscle model is exactly

satisfied at every time step. Explicit integrators, such as the Runga-Kutta integrator

do not explicitly enforce the length relationship between the muscle and tendon, likely

resulting in the difference in simulated motion. Without the use of passive joint limit

forces, the OpenSim model also results in non-physiological motion of the elbow with a

negative angle. The Runga-Kutta integrator also results in much higher extension which

may be attributed to the integrator itself.

While the motion is similar at stable time steps, the two integrators have drastically

different properties when varying the time steps. Figure 3.4 shows the RK4 simulation at

three different time steps. From the qualitative plot, the integration is stable below time

steps of 0.0005 sec; however, at 0.0008 sec, the simulation clearly becomes unstable.
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Figure 3.4. Comparison of the simulated elbow trajectories using the
Runga-Kutta integrator at different time steps.
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Figure 3.5. Comparison of the simulated elbow trajectories using the Vari-
ational integrator at different time steps.

The RK4 results are compared against the variational integrator at two different time

steps. Figure 3.5 shows the VI at two time steps, both larger than the 0.0008 sec which

proved to cause an instability in the RK4 integrator. At two orders of magnitude longer,

0.01 sec, the variational integrator remains stable. The integrators also fail in two differ-

ent manners: At longer time steps, the Runga-Kutta integrator becomes unstable. The
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Figure 3.6. Comparison of the simulated trajectories using each integrator
to the recorded elbow motion.

variational integrator will instead fail to solve the Newton-Raphson iterations, resulting

in no simulation solution. In this respect, the VI provides a better failure mode as the

simulation only drastically diverges very close to where no solution exists. Therefore, it

is less likely that an errant motion will be returned by the variation integrator compared

to the RK4 scheme at large time steps.

3.3.1. Parametric Model Error and Experimental Identification

The EMG data used for the simulation tests was obtained simultaneously with actual

motion capture of the elbow trajectory. While the simulation results highlight the differ-

ences between numerical methods, when the resulting trajectories are compared against

the actual motion of the elbow, it becomes clear that significant differences remain be-

tween all of the simulations and the observed trajectory of the elbow. Figure 3.6 shows

the same three simulated results with the addition of the actual elbow motion.
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Figure 3.7. Simulated elbow trajectories for four different values of the
cylindrical wrapping surface on the triceps muscles.

As highlighted in the introduction of this thesis, three major causes of error can

include numerical error, parametric error, and error from unmodeled dynamics. Since the

simulation results focused primarily on reducing numerical error in the simulation, there

is clearly a large amount of parametric and unmodeled error. It should not be completely

surprising to have such large errors due to the nature of biomechanical models. As opposed

to machines created to satisfy a set of specifications and a predetermined set of models, the

biomechanical models must be obtained primarily using empirical formulations, especially

when modeling the forces produced by the muscles.

Figure 3.7 highlights the sensitivity of the elbow trajectory output to changes in one

important parameter which is the tricips muscle wrapping radius. This wrapping radius

affects the moment that is applied on the elbow joint given the force produced by the

muscle-tendon. Even small changes on the order of millimeters have a significant effect
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on the elbow trajectory. These sensitivities have been observed in several studies as well

as variations in the muscle models used [45,46]

In order to refine estimates of parameters such as the wrapping radius within the

system model, it is desirable to be able to perform experiments in vivo in the case of

biomechanics or on the functioning machine otherwise. This methodology has been used

to attempt identification of geometric parameters as well as general models [47–49]. How-

ever, blindly creating experimental trajectories for estimation in these systems may not

result in better estimates of the model parameters if the parameters are not observable, or

the sensitivity to the output is very low. The question of how to create these optimal tra-

jectories for physical systems, while managing computational complexity and integrator

error serves as the motivating force behind the contributions of this work. The following

chapter presents a step toward this goal with a continuous-time algorithm for information

and conditioning optimization.
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CHAPTER 4

Continuous-time Information Optimization

The trajectory of a dynamical system can significantly impact the experimental identifica-

tion of parameters both in the precision of an estimate and the ability to estimate multiple

parameters. As trajectories for physical systems evolve in continuous time, a natural goal

is to compute optimal trajectories in the continuous time domain while satisfying the

constraints imposed by the system dynamics. Discretization of the dynamics a priori has

several problems. First and foremost, an arbitrary choice about the discretization needs to

be made. Secondly, adaptive time-stepping methods cannot be used, and a discretization

appropriate for the initial trajectory cannot be expected to be appropriate for the final

trajectory. Lastly, discretization can lead to high-dimensional constrained optimizations

(dimensions of 107 to 1012 are common in practical problems) that are impractical to

solve numerically. This chapter addresses the trajectory optimization problem using a

continuous-time algorithm that has been modified to improve upon information metrics

derived from Fisher information.

Two approaches in the cost metric are derived and validated in the continuous-time

domain. In both cases, the projection-based trajectory optimization method introduced in

Section 2.3.1 is used as the optimization mechanism to compute updates to the trajectory.
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Section 4.2 presents the first approach which aims to maximize the Fisher information

using E-optimality conditions. The experimental setup used to validate the method is

discussed in Section 4.3 with the simulated and experimental results presented in Section

4.4.

In the second approach, the conditioning of the estimation problem itself is considered.

Section 4.5 presents the conditioning optimization algorithm which improves the condi-

tion number of the Hessian matrix of the estimation problem to improve the estimator

rate of convergence given multiple unknown parameters. For the Iterated-Least Squares

estimator, the Hessian becomes equivalent to the Fisher information matrix given the

Gaussian measurement noise assumed in the problem formulation. Therefore, the prob-

lem becomes an extension of the Fisher information maximization algorithm using a ratio

of the eigenvalues as the cost metric. The algorithm is validated with another experiment

with results provided in Section 4.7.

4.1. Related Work

Since the design of an experimental trajectory has a wide range of potential uses, there

have been a number of contributions to the area from different fields. A large amount of

literature on optimal experimental design exists in the fields of biology [50–52], chemistry

[53], aerospace [54], and systems [55–58]. Many of these results focus on particular

applications to experiments specific to their respective fields; however, the underlying

principles of information theory remain the same.

Metrics on the Fisher information are used as a cost function in many optimization

problems including work by Swevers on “exciting” trajectories [59]. This work, as well as
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related works [10,60], synthesize trajectories for nonlinear systems that can be recast as

linear systems with respect to the parameters. Further research has resulted in optimal

design methods for general nonlinear systems. In work by Emery [61], least-squares

and maximum-likelihood estimation techniques are combined with Fisher information to

optimize the experimental trajectories. In this case and a number of others, the dynamics

are solved as a discretized, constrained optimization problem [62,63].

To avoid discretization of continuous dynamics, a class of methods has been developed

that relies on sets of basis functions to synthesize optimal controls for the system [64–66].

These methods allow one to optimize over a cost index, such as the condition number,

using a finite dimensional optimization method over a fixed set of basis functions. While

this allows the trajectory to be expressed in the continuous time domain, the space of

allowable control signals is still finite. One example of the basis function set includes the

Fourier basis, which is used create a class of trajectories over which the optimization can

be performed [67].

A wide variety of work has also been performed in the area of experiment design

concerning estimators and the identifiability of parameters [4, 68–73]. In the robotics

field specifically, trajectory optimization and parameter identification algorithms have

been developed for special classes of robotic systems. For serial robot arms and similarly

connected systems, chain-based techniques and linear separation of parameters can be

used [74, 75]. Techniques have also been adapted for parallel robots and manipulators

[76–78]. While these techniques perform well for the intended class of robots, we seek

an algorithm that has the ability to work on general nonlinear systems, only requiring

differentiability of the dynamics and some form of control authority.
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4.2. Trajectory Optimization Maximizing Fisher Information

The trajectory optimization algorithm used in the results to follow uses the projection-

based optimal trajectory tracking algorithm defined in Section 2.3.1 with an extension

to include Fisher information as an objective [30, 32]. This algorithm is formulated in

continuous-time to allow the time discretization of the dynamics to be easily decoupled

from the measurement time points as well as allow for the use of any numerical integration

method. As discussed in Chapter 3, the continuous algorithm may not result in the most

stable method; however, it provides the theoretical basis for extension into the structured

domain in Chapter 5. Therefore for the continuous derivation, the objective including

any costs on the Fisher information must be formulated in continuous time.

Section 2.1.2 introduced the quantity of Fisher information, quantifying the amount

of information a set of observations contains about a set of unknown parameters [79].

For dynamic systems, a set of measurements taken during the execution of a trajectory

provides information about model parameters. The effectiveness of the parameter estima-

tion techniques outlined in Section 2.2 is related to the Fisher information matrix (FIM)

through the Cramer-Rao bound described in Section 2.1.3. In practice, increasing the

Fisher information of the system tends to increase the maximum precision that can be

obtained by an estimation algorithm; however this is not explicitly guaranteed by (2.1).

The method presented in this chapter will assume that the measurement noise of the

system is normally distributed with zero process noise, and the FIM for the system is

given by,

(4.1) I(θ) =

tf/dt∑
i

Γθ(ti)
T · Σ−1 · Γθ(ti),
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where Γθ(ti) is the parametric sensitivity of the system output as defined by (2.6), and

Σ is the known sensor covariance matrix. Note that this expression has been simplified

from the general form of Fisher information given the assumptions stated above. Details

of the simplification can be found in [23].

To use the FIM as a metric for trajectory optimization, I(θ) ∈ Rp×p must be mapped

to a scalar value. There is a significant amount of literature on different types of map-

ping choices [50, 61, 62]; however, this work will restrict itself to the design choice of

E-optimality. The choice of E-optimal design is used to improve the worst-case variances

of the parameter set by maximizing the minimum eigenvalue of the FIM. Thus, the al-

gorithm creates a variation on the trajectory to proportionally improve the information

acquired. Other experimental design approaches such as A and D-optimality conditions,

which provide different goals for the desired information acquisition, can be realized with

modifications to the objective function. The following section presents the derivation of

the E-optimal objective function and presents the iterative algorithm.

4.2.1. Objective Function

To define an objective function dependent on the FIM on a continuous-time domain, the

maximization of the information matrix needs to be cast from a finite set of discrete

measurements into an appropriate continuous analogue. To satisfy this condition, the

information equation (4.1) will be written as

(4.2) Ĩ(θ) =

∫ tf

t0

Γθ(t)
T · Σ−1 · Γθ(t) dt.
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Assuming that observations are taken regularly along the entire trajectory, the optimal

trajectory x∗(t) maximizing the eigenvalues of the continuous Ĩ(θ) will approximately

optimize the eigenvalues of the sampled I(θ). As the sampling rate increases, the values

of Ĩ(θ) and I(θ) will converge.

If measurements only occur along certain portions of the trajectory with predetermined

times, a weighting function can be added to Ĩ(θ) to ensure that sensitivity is maximized

specifically in the sampled areas of the trajectory. However, if the observation time is not

predetermined, the sensitivity along the entire trajectory will be maximized using Ĩ(θ).

The optimization objective function will therefore be given by

(4.3) J =
Qp

λmin
+

1

2

tf∫
t0

(x(t)− xd(t))T ·Qτ · (x(t)− xd(t)) + u(t)T ·Rτ · u(t) dt,

where λmin is the minimum eigenvalue of Ĩ(θ), Qp is the information weight, xd(t) is a

reference trajectory, Qτ is a trajectory tracking weighting matrix, and Rτ is a control

effort weighting matrix. The weights must be chosen such that Qp ≥ 0, Qτ is positive

semi-definite, and Rτ is positive definite. Although the cost function appears to include

a terminal condition on the eigenvalues of Ĩ(θ), the eigenvalues themselves are functions

of each point along the trajectory. This property will allow the apparent non-Bolza form

of the optimal control problem to be cast into a Bolza form for the calculation of the

descent direction. This Bolza form of the problem only holds locally for perturbations to

the trajectory required for the iterative LQR optimization.

The various weights allow for design choices in the optimal trajectory that is obtained.

The requirements of positive definiteness and positive semi-definiteness of the weighting
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matrices are necessary to maintain a locally convex optimization problem including the

fact that λ ≥ 0 [30]. Increasing the control weight will result in less aggressive trajectories,

generally decreasing the obtained information. Using a reference trajectory allows for an

optimal solution that remains in the neighborhood of a known trajectory.

While the cost function is generally well defined, it does become ill-conditioned and

singular in the case of a zero eigenvalue. This will occur if the initially chosen trajectory

yields no information about at least one unknown parameter. For a dynamic system,

this may occur if a stationary trajectory is chosen in which case, perturbing the initial

trajectory of the system using a heuristic method will likely provide a sufficient initial

trajectory for the algorithm. If a perturbation fails to provide any information, the

system geometry or sensor configuration may prohibit the experiment from resolving the

parameters simultaneously for any trajectory. In this case, sensors may need to be added,

or unknown parameter removed to create a well-posed experiment.

4.2.2. Extended Dynamic Constraints

The optimal control algorithm was previously formulated for trajectory tracking problems

where the objective function is explicitly a function of the system states [30]. However,

given (4.3), the cost also depends on ψ(t) = d
dθ
x(t). Since the objective is to minimize

a norm that includes ψ(t), which depends nonlinearly on x(t), ψ(t) is treated as an

additional state. Appending ψ(t) to the state vector as an additional dynamic constraint

allows for variations in ψ(t) in the optimization algorithm. This technique has been used

in the optimization of aeronautical trajectories through extending the state with similar

sensitivity terms to improve the covariance of the planned trajectory [80–82]. Work
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by Ansari [83] uses the state extension technique for the related problem of sensitivity

minimization. For convenience, the extended state will be defined in this thesis by x̄(t) =

(x(t), ψ(t)), and η(t) = (x̄(t), u(t)) defines a curve which satisfies the nonlinear system

dynamics.

4.2.3. Projection Operator

While the minimization of (4.3) is subject to the dynamic constraints given by (2.2) and

(2.7), the optimization algorithm defined in Section 2.3.1 linearizes the constraints to

produce an LQ problem. This problem is then iteratively solved to produce a descent

direction followed by a projection that maps the infeasible trajectory, formed by the sum

of the current iterate and the descent direction, onto the dynamic constraints as detailed

in [32].

To incorporate the extended dynamics constraints, the projection operator in (2.17)

is reformulated with the sensitivity constraint and extended dynamics

P (ξ(t)) :


u(t) = µ(t) +K(t)(ᾱ(t)− x̄(t))

ẋ(t) = f(x(t), u(t))

ψ̇(t) = Dxf(x, u, θ)Tψ(t) +Dθf(x, u, θ)T .

This projection formulation allows unconstrained variations of the trajectory in both the

nominal state and sensitivity state to be calculated with the solution then projected to a

feasible trajectory at each iteration of the optimization algorithm.
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4.2.4. Optimization Routine

Algorithm 2.2 defines the iterative method using a gradient descent approach to solve

the optimization problem. Each iteration requires a descent direction ζk(t) = (z̄, v) to

be computed from (2.17), only now the linearized dynamics include the extended state.

Thus (2.18) becomes

˙̄z = Ā(t)z̄ +B(t)v,

where the descent direction includes the perturbation to the extended state. As with the

original form of the trajectory optimization algorithm, the descent direction can be solved

solved as a time-varying LQ problem. The detailed calculation of the descent direction

for this extension of the algorithm is provided in Appendix B.1.

Given the descent direction ζk, a backtracking line-search of the projection, P (ηk(t) +

γkζk), provides a feasible trajectory assuming the step size γk satisfies the Armijo sufficient

decrease condition [27]. Iterations upon the feasible trajectories continue until a given

termination criteria is achieved.

4.3. Experiment Setup for Fisher Information Maximization

To demonstrate the optimization of Fisher information for a dynamic system, a simula-

tion and experimental test of a 2-link cart-pendulum system is considered. The system

has three configuration variables, q = (x(t), φ1(t), φ2(t)), where x(t) is the horizontal

displacement of the cart, and φi(t) is the rotational angle of each link as seen in Fig. 4.1.

The control input to the system is the acceleration of the cart, given by u. The cart can

accelerate in either direction with positive acceleration to the right. Rotational friction

is modeled at each pendulum joint, but the joints remain unactuated. The goal of the
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Figure 4.1. Cart-pendulum system

optimization algorithm is to accurately estimate the mass of the top pendulum link and

the damping coefficient of the joints.

4.3.1. Experimental Testbed Setup

4.3.1.1. Robotic System. The experimental setup shown in Fig. 4.2 consists of a dif-

ferential drive mobile robot with magnetic wheels moving in a plane. The pivot point for

the first link of the double pendulum is provided by mounts on the robot. A plastic mem-

brane provides the robot’s driving surface. The membrane is tensioned in all directions

within an aluminum frame mounted parallel to the ground at a height of approximately

2.5 meters. An unpowered, magnetic idler mechanism is placed on the top side of the

plastic to provide adherence for the robot. The idler has the same geometric footprint as

the robot, but its magnetic wheels have opposite polarity.

Two 24 V DC motors drive the robot’s magnetic wheels. PID loops running at 1500 Hz

close the loop around motor velocity using optical encoders for feedback. Two 12 V lithium

iron phosphate batteries provide all required power. Desired velocity commands are sent

to the robot wirelessly using Digi XBee R© modules at 50 Hz, and a 32-bit Microchip PIC
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Figure 4.2. Image showing the experimental setup with annotations of the
important components provided.

microprocessor handles all on-board processing, motor control, and communication. The

motors are powerful relative to the inertias of the robot, the double-pendulum payload,

and the wheels. Thus, they are capable of accurately tracking aggressive trajectories up

to a maximum rotational velocity. Since the input to the 2-link cart-pendulum system is

the direct acceleration of the cart, the PID loops on the motor velocity allow the robot

to accurately track a given velocity profile. The Robot Operating System (ROS) is used

for visualization, interpreting and transmitting desired trajectories and for processing and

recording all experimental data [84].
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Figure 4.3. Illustration of the image processing performed on the point
cloud provided by the Microsoft Kinect R©. The top image shows the raw
point cloud, and the bottom shows the data after all processing; different
colors are assigned to each cluster, and white lines are displayed to show
the lines produced by the sample consensus filter.

4.3.1.2. Tracking System. A Microsoft Kinect R© is employed to track the system and

obtain experimental measurements. The Kinect provides uncolored point clouds at 30 Hz

as seen in Fig. 4.3, and the Point Cloud Library (PCL) is used for data processing [85].

Each raw point cloud is first downsampled, and then pass-through filters eliminate points

that lie outside of a predetermined bounding box of expected system configurations. A

Euclidean cluster extraction algorithm is then used to extract three separate clouds –
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one for the robot and one for each of the links. The pendulum links are made from

an acrylic that is transparent to the Kinect; opaque markers adhered to each of the

links provide a visible surface. The markers have a gap between them ensuring that the

software uniquely detects the three clusters. The coefficients of the line equations along

the axis of each link are then extracted using a sample consensus segmentation filter on

the clusters representing the links. Once the coefficients for these lines are known, simple

trigonometry allows calculation of the desired link angles, φ1 and φ2.

Since the Kinect will provide measurements of the absolute rotation angle of each

pendulum link, it is important to estimate the variance of the measurements for use in

the optimization algorithm. To measure the covariance of the angles computed from the

point cloud, measurements were recorded for 30 seconds at sensor’s fixed frequency of 30

Hz with the double pendulum hanging in a stationary position. Although the variance of

the measurements will have some dependence on the link velocity and configuration, we

assume independence for the purpose of this experiment. The angles calculated from the

point cloud are assumed to be independent for the two links, so the off-diagonal elements

are set to zero, yielding a covariance matrix given by

(4.4) Σ =

 1.12× 10−4 0

0 4.79 · 10−4

 rad2.

4.3.2. System Model

A mathematical model of the system is created by deriving standard rigid body dynamics

equations. A Lagrangian, Lc = T−V is constructed where the kinetic energy of the system

T is given by T = 1
2

2∑
i=1

miνi(x, φ1, φ2)2 + Iiωi(x, φ1, φ2)2, where νi is the translational
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velocity, and ωi is the rotational velocity of each link. The potential energy V is a

function of the height zi of each link’s center of mass, V =
2∑
i=1

migzi(x, φ1, φ2) given the

gravitational constant g. For each link, the moment of inertia Ii is defined as a function

of the mass and measured center of mass location. The center of mass on the link is also

used to define the potential energy of the link in the Lagrangian.

Using the Euler-Lagrange equation,

0 =
∂Lc
∂q
− d

dt

(
∂L

∂q̇

)
,

the full equations of motion can be solved in terms of q̈(t) (keeping in mind that ẍ = u

by assumption).

The Kinect measures the absolute angle yi of each link i which provides two mea-

surement outputs, y(t) = [y1(t), y2(t)]. Since the system states define the angle of link 2

relative to link 1, the output function is

g(x(t), u(t), θ) =

 φ1(t)

φ1(t) + φ2(t)

 .
4.3.3. System Parameter Selection

We have not yet addressed the choice of which parameters to identify for a given system.

Choosing the set of parameters will depend on the context of the estimation needs as

well as concerns with identifiability. In certain situations, some parameters may not be

identifiable regardless of trajectory selection. For example, given the 2-link cart-pendulum

system with no damping in the joints, estimating both link masses independently is not

possible. To illustrate this, Fig. 4.4 shows a contour plot of β, the parameter estimator
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Figure 4.4. Contour plot of the unidentifiable system. The deterministic
value of the parameter is shown by the green dot in the contour plot with
isolines indicating the estimator cost, β(θ). The straight lines indicate a
poorly conditioned estimation problem which results in non-identifiable pa-
rameters.

cost, vs. changes in each mass value. The straight isolines in the plot indicate that the

parameters are coupled through a constant scaling factor resulting in no unique set of mass

parameters that minimize the cost. Rather, the estimator cost can be minimized with an

infinite linear combination of the mass parameters, therefore, the specific parameter set

is non-identifiable by the estimator.

The non-identifiability condition can be tested for a given trajectory by examining

the eigenvalues of the Fisher information matrix. If and only if a zero eigenvalue exists,

neither parameter can be uniquely identified. If a zero eigenvalue exists for the trajectory,
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Table 4.1. Measured System Parameters

Parameter Link 1 Value Link 2 Value
Mass, m Estimate 0.0847 kg
Link Length, L 0.305 m 0.305 m
Link Width, w 0.0445 m 0.0381 m
Bearing offset from edge 0.0127 m 0.0127 m
Center of mass position, s 0.146 m 0.125 m
Damping coefficient, c Estimate* Estimate*

*The values for the damping coefficient of each joint will be assumed to be equal.

another trajectory should be tested for identifiability. If no trajectory can be found, the

algorithm cannot be initialized and a different set of parameters should be chosen. The

experiment that follows in this paper is performed under the assumption that the two

unknown system parameters are the mass of the top link m1 and the damping coefficient

of the top link joint and bottom link joint c. Since both links use the same bearings,

we will assume that the damping coefficients of the two joints are equal. The remaining

system parameters have been measured and are presented in Table 4.1. Additionally,

Table 4.2 lists the eigenvalues of the FIM for the initial trajectory. Since both eigenvalues

are non-zero, the parameters can be simultaneously estimated to some precision.

Given that m1 and c are the uncertain parameters, the following values will be used

as initial estimates of the parameters,

(4.5) m1 = 0.085 kg c = 0.50 g/sec.

Note that the choice of units weights the desired precision between estimated parameters.

In this case, the damping coefficient units are scaled to provide more relative precision in

the mass estimate. The remaining system parameters which appear in Table 4.1 will be

considered the actual known model parameters.
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Figure 4.5. Comparisons of the trajectory before and after Fisher informa-
tion optimization.

4.4. Fisher Information Experimental Results

4.4.1. Optimization Results

The optimization algorithm was run until a convergence criterion of |DJ(ξ(t))◦ ζ| < 10−1

was satisfied, starting from an initial descent magnitude around 8 · 103. The comparison

of initial and optimized trajectories can be seen in Fig. 4.5.

Table 4.2 shows the initial and optimized eigenvalues of the FIM, Ĩ(θ), and the initial

and optimized cost J . The results show that the minimum eigenvalue λ2 increases by over
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Table 4.2. Information Optimization Results

λ1 λ2 J
Initial: 123.3 0.0315 15.9
Optimized: 1.43 · 105 32.6 0.618
- - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Fisher Information Matrix

Initial:

[
3.72 · 103 −5.14
−5.14 9.57 · 10−1

]

Optimized:

[
4.31 · 106 −3.77 · 103

−3.77 · 103 9.91 · 102

]

a factor of 103. Additionally, the other eigenvalue increases, though not included directly

in the cost function.

Examining the plots of the optimized trajectory, it is clear that more information

is gained by oscillating the pendulum back and forth. In particular, more information

about the damping parameter c is gained by increasing the oscillation. This observation

leads to a hypothesis that the cost function and optimization may be driven strongly by

information concerning the damping parameter, although the result increases the overall

amount of information for both parameters.

Using this optimized trajectory, simulation and experimental results of the system as

well as the experimental testbed are presented in the following sections to demonstrate

the improvement in the estimation of system parameters.

4.4.2. Monte-Carlo Simulation Analysis

Given the system model and parameters, results are first obtained in simulation to as-

sess the effectiveness of the algorithm given an exact model and pure Gaussian noise
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Table 4.3. Monte-Carlo Simulation Results

Monte-Carlo Covariance

Initial:

[
3.16 · 10−4 3.45 · 10−3

3.45 · 10−3 1.06

]

Optimized:

[
2.37 · 10−7 1.63 · 10−6

1.63 · 10−6 1.19 · 10−3

]
- - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Cramer-Rao Lower Bound

Initial:

[
2.71 · 10−4 1.46 · 10−3

1.46 · 10−3 1.05

]

Optimized:

[
2.32 · 10−7 8.83 · 10−7

8.83 · 10−7 1.01 · 10−3

]

distributions. An experimental measurement of the trajectory is simulated by generat-

ing the trajectory of the deterministic system using our estimate of the parameters and

sampling the trajectory at a discrete number of points adding Gaussian additive noise at

each sample. This results in a discrete set of noisy measurements that will be used for

the subsequent parameter optimization routine. For the simulation example, a 5 second

trajectory is simulated at the Kinect’s sampling rate of 30 Hz. The sampling rate is set

by the frequency of sensors being used. The uncertainty of each state measurement is

normally distributed with zero mean and variance equivalent to that measured by the

Kinect during the testbed setup given by (4.4).

A Monte-Carlo simulation is performed using 300 trials, resampling the trajectory

with new additive Gaussian noise samples for each trial. For the scope of the Monte-

Carlo simulation analysis, the parameter estimates from (4.5) are treated as the actual

system parameter set used to generate the simulated output and the initial parameter
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Figure 4.6. Monte-Carlo histogram approximations of the PDF with respect
to the Lebesgue measure of the optimized trajectory with the optimized
variance fit in red and the initial trajectory variance in blue.

estimate are uniformly varied in the range of ±100% of each parameter value in (4.5).

This provides simulation results that are independent of the initial estimate.



89

After running the simulation, histogram plots in Fig. 4.6 show the distribution of

parameter estimates using the optimized trajectory. The histogram of the optimized tra-

jectory is shown by the red bins with a Gaussian fit to the mean and standard deviation

shown by the solid red line. The dashed blue line indicates the Gaussian fit to the his-

togram results of the initial trajectory; however, to simplify the plot, the initial histogram

is not shown. The averaged statistics of the simulation trials can be seen in Table 4.3.

Since the expected information has been significantly increased with the optimized tra-

jectory, the results confirm that the covariance of the estimated parameters decreases

dramatically. The precision of both parameter estimates with respect to the Lebesgue

measure is improved by a factor of 103.

4.4.3. Cramer-Rao Lower Bound

The estimator’s covariance result should also be compared with the theoretical Cramer-

Rao bound. As discussed in Section 2.1.3, the Cramer-Rao bound places an absolute

lower bound on the variance of the parameter estimate that can be obtained using the

batch least-squares estimator or other unbiased estimator. The bound is given in (2.1).

Table 4.3 lists the Cramer-Rao bounds for the initial and optimized trajectories. The

covariance of the initial trajectory is clearly subject to a higher bound than that of the

optimized trajectory. Due to round-off and other numerical errors in the algorithms and

Monte-Carlo simulations, the covariance of the Monte-Carlo estimates is higher than the

lower bound; however, overall remains within a factor of 3 of the predicted best-case

variance estimates according to the Cramer-Rao bound.
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Table 4.4. Experimental Results

m1 (kg) c (g/sec)
Initial Estimate: 0.085 0.500
Measured Actual Value: 0.110 0.180

Initial Trajectory Estimate: 0.085 0.500
% Error from Actual Value: 22.7% 316.7%

Optimal Trajectory Estimate: 0.107 0.211
% Error from Actual Value: 2.7% 17.2%

4.4.4. Experimental Results

After validating the optimization results in simulation, the trajectories were tested on the

experimental testbed to determine their experimental effectiveness. Each trajectory was

run on the system with the observed angles and position of the robot recorded by the

Kinect tracking system. The recorded data can be seen in Figs. 4.7 and 4.8.

Using the collected data as the reference for the least-squares parameter optimization,

the parameter set estimate from (4.5) is used as the initial estimate for the parameter

optimization routine. Using the batch-least squares estimation method, the best estimates

of the parameters were found based on the data collected. The results can be seen in

Table 4.4. Actual values of the parameters for the experimental system were obtained by

disassembling the pendulum system. The mass of each link was determined by individually

weighing each link, and the damping coefficient was obtained from a batch-least squares

estimate of a single link in a free swinging trajectory.

Since the noise present in the initial trajectory is so high relative to the observed angles,

the parameter estimation algorithm is not able to make any progress from the initial

estimate of the parameters. This results in a 22.7% error in the mass and 316.7% error
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Figure 4.7. Comparisons of the measured trajectories and estimated model
trajectory for the initial choice of experimental trajectory.
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in the damping coefficient from the baseline values. The optimized trajectory provides

parameter estimates with only 2.7% error in the mass and 17.2% error in the damping

coefficient values.

A contour plot of the parameter estimator cost β is shown in Fig. 4.9. Using the

experimental trajectory data, the cost was computed for a portion of the parameter space.

The figure shows a well-defined optimization basin for the optimized trajectory where the

basin of the initial experimental trajectory is far less convex. This optimized contour plot

illustrates why the data from the optimized trajectory provides the better estimate of the

parameters of interest given the observed measurements. The E-optimality cost function,

however, does not explicitly condition the optimized basin as seen in Fig. 4.9b. In some

cases, it may be advantageous to use an additional approach to improve the condition

number of the optimization problem as well [16].

It is important to note that the error in the experimental case is far greater than the

predicted Cramer-Rao bound in Table 4.3. This is due to additional disturbances and

unmodeled effects such as out of plane swinging motion, error in the control signal, and

sensor nonlinearities. These effects will cause bias error in the estimator; however, even

with these sources of bias, the optimized trajectory provides a much better estimate of

model parameters than the initial system trajectory.

In the case of multiple parameter estimation, one concern not addressed in this cost

function is the conditioning or existence of a well-posed estimator. Situations may occur

where good converge rates of the estimator are as important as the precision for the

estimation. The following sections highlight a modification to the algorithm in the case

where a well-conditioned estimator is desired.
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Figure 4.9. Comparisons of parameter optimization cost contours with iso-
lines indicating the estimator cost, β(θ). The deterministic estimate of the
parameter is shown by the green dot in the contour plot. The parametric
map of the optimized trajectory is significantly more convex than the initial
trajectory.
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4.5. Trajectory Optimization for Well-Conditioned Estimation

The goal of Fisher information optimization algorithm is to improve the estimation of

the worst performing parameter direction; however, when using a gradient descent or

Iterated Least-Squares algorithm with multiple unknown parameters, another important

metric is the condition number of the estimator Hessian. As mentioned in Section 2.2.1.1,

the conditioning, and thus the rate of convergence is dependent upon the minimum and

maximum eigenvalue of the Hessian.

To improve the convergence rates using either gradient descent or Iterated Least-

Squares estimation methods, an initial experimental trajectory having a Hessian with a

high condition number can be optimized to produce an experimental trajectory with better

Hessian conditioning. The theoretical framework for the optimization routine shares many

of the same derivations as the Fisher information algorithm but with a modified cost

related to the condition number of the Hessian.

4.5.1. Cost Function

The cost function, which is minimized by the trajectory optimization algorithm, directly

incorporates the condition number of the parameter estimation Hessian, a control cost,

and an optional cost on the trajectory itself. The trajectory optimization algorithm uses

the current best estimate of the parameter set. Therefore, it is assumed that the parameter

set is close to the true value; thus the Hessian is approximated by (2.10).

Using this formulation, the condition number of the approximated Hessian can be

calculated. Assuming that the Euclidean norm is used and the Hessian is symmetric, the
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condition number is equal to

κ(D2
θβ(θ)) =

∣∣∣∣λmaxλmin

∣∣∣∣ ,
where λ is the set of eigenvalues of the matrix d2

dθ2
β(θ).

A well-conditioned estimator has a condition number very close to 1, therefore, the

cost function for the trajectory optimization problem is given by

(4.6) J = Qp

(
λmax
λmin

− 1

)
+

1

2

tf∫
t0

(x(t)− xd(t))T ·Qτ · (x(t)− xd(t)) + u(t)T ·Rτ · u(t) dt,

where Qp is a scalar weight on the condition number minimization, Qτ is a n×n weighting

matrix on the trajectory tracking cost, and Rτ is a r × r weighing matrix on the control

inputs.

It can be clearly seen that the resulting cost function (4.6) is very similar to that of

(4.3) in Section 4.2. Instead of using the worst-performing eigenvalue as the metric, the

condition number looks at the ratio of the eigenvalue spread. Thus, any direction which is

drastically different than another will be optimized to produce an estimator which quickly

converges under the Iterated Least-Squares method.

4.5.2. Optimization Routine

The optimal control problem is solved using the same iterative descent technique shown

in Algorithm 2.2. As was the case with the Fisher information optimization method, the

state is extended with the sensitivity states as described in Section 4.2.2. The projection

operator also is equivalent to the projection specified in Section 4.2.3. Given the descent

direction, ζi, a backtracking line-search of the projection, P (ηi(t)+γiζi) provides a feasible
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trajectory solution assuming that the step size γi satisfies the Armijo sufficient decrease

condition. This new feasible trajectory then becomes the trajectory for the next iteration

of the optimal control algorithm.

At each iteration of the conditioning optimization algorithm, the time-varying LQ

problem given by (2.17) must be solved. The descent direction depends on the lineariza-

tion of the cost function, DJ(P (ξi(t))) and the local quadratic model, 1
2
〈ζi(t), ζi(t)〉. De-

tails of the derivation of the descent direction for the conditioning cost are shown in

Appendix B.1.

4.6. Experimental Setup for Conditioning Optimization

To illustrate the use of conditioning optimization on a nonlinear, dynamic system, a

simulation and experimental test of a two dimensional robot and suspended mass system

is analyzed. The system has two configuration variables, q = (x(t), φ(t)), where x is the

horizontal displacement of the cart and φ is the rotational angle of the link as seen in

Fig. 4.10. For this example, the robot’s horizontal acceleration will be directly controlled,

x

u

φ

Fs

Figure 4.10. Diagram of the robot and suspended mass system.
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therefore, u(t) = ẍ(t). A load cell provides the magnitude of string tension force as the

sole output of the system.

4.6.1. System Model

The equations of motion for the system are given by the following

ẋ =



ẋ

u

φ̇

u
`

cosφ− g
`

sinφ


,

where u is the cart acceleration control input, m is the mass suspended from the robot,

and ` is the length of the string. Additionally, the equation for the force output Fs is

(4.7) y = Fs = mg cosφ−m`φ̇2 − u sinφ.

It is assumed that the trajectories will maintain tension in the string; therefore, a fixed

distance between the robot and mass can be assumed.

The goal of the experiment is to estimate the value of the mass attached to the

string and the length of the string, θ = {m, `}. The choice of force as the system output

highlights the effect of the trajectory on the conditioning of the estimation problem. Static

or nearly static trajectories, such as the initial trajectory shown in Fig. 4.12a, provide

valid estimates of the mass value; however, the string length cannot be resolved. On the

other hand, dynamic trajectories provide fluctuating force measurements which can be
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used in conjunction with the predicted model to simultaneously estimate the length and

mass values.

4.6.2. Experimental Testbed Setup

The experimental setup shown in Fig. 4.11 consists of a differential drive mobile robot

with magnetic wheels moving in a plane. The robot’s driving surface is provided by a

smooth steel plate mounted above and parallel to the ground. Two 24V DC motors drive

the robot’s magnetic wheels. PID loops running at 1500 Hz close the loop around motor

velocity using optical encoders for feedback. Two 12V lithium iron phosphate batteries

provide the required power. Desired velocity commands are sent to the robot wirelessly

using Digi XBee R© modules at 50 Hz, and a 32-bit Microchip PIC microprocessor handles

all on-board processing, motor control, and communication.

The motors are powerful relative to the inertias of the robot, the suspended mass, and

the wheels. Thus they are capable of accurately tracking aggressive trajectories up to

a maximum rotational velocity. Since the input to the system is the direct acceleration

of the cart, PID loops on the motor velocity allow the robot to accurately track a given

velocity profile. A load cell is attached to the robot and the mass is suspended from its

measurement point to enable collection of force data using an instrumentation amplifier

and 10-bit, on-board ADC. The load cell output has been fit to a linear model using six

known masses ranging from 0.05kg to 0.30kg. The Robot Operating System (ROS) is used

for interpreting and transmitting desired trajectories and for collecting and processing all

of the experimental data [84].
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Figure 4.11. Image showing the robot and suspended mass experimental
system with a diagram of main components.

4.6.3. Identification Procedure

The procedure for completing the optimizations and taking measurement data from the

experimental system is performed in the following order.

(1) Perform the conditioning optimization using the current best estimate of the

parameters which yields a new set of control inputs for the system.

(2) Run the experiment using the newly generated inputs and take measurement of

the output along the trajectory.

(3) Perform the least-squares parameter optimization using the optimized trajectory

to determine a new estimate of the parameter set.



101

4.7. Conditioning Optimization Experimental Results

4.7.1. Overview

The following section presents the results of the optimization study in both simulation and

experimental trials. Given an initial trajectory and set of unknown model parameters,

the conditioning algorithm is used to synthesize an optimized trajectory. The key results

are as follows:

• The condition number of the parameter optimization Hessian decreases from

1.73×108 using measurements from the initial trajectory to 19.3 using optimized

trajectory measurements.

• In simulation, 27 gradient descent steps are needed to converge to the actual

parameter values using optimized trajectory measurements compared to over

1000 using the initial trajectory.

• Using the experimental system, the error in predicted string length decreases

to 2.4% using optimized trajectory measurements compared to 122.% using the

initial trajectory data.

Detailed results and analysis of the data is provided in the sections that follow.

4.7.2. Conditioning Optimization Results

The two parameters that will be estimated are suspended mass value and the string length.

An initial, and intentionally incorrect, estimate of the parameters was chosen for both the

gradient descent and the Iterated Least-Squares estimation algorithms. The actual values

of the parameters were independently measured to provide a benchmark for algorithm
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Figure 4.12. Plots showing the robot (a) and suspended mass (b) trajectory
before and after conditioning optimization.

verification. These values are as follows,

Initial estimate : m = 0.10 kg, ` = 0.60 m

Actual values : m = 0.12 kg, ` = 0.50 m

A minimal control trajectory is chosen as the initialization for the conditioning opti-

mization algorithm as shown in Fig. 4.12. Using the initial estimate of the parameter set
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Table 4.5. Conditioning Optimization Results

Initial Optimal
First Eigenvalue, λ1: 3.18× 106 3.63× 106

Second Eigenvalue, λ2: 1.84× 10−2 1.88× 105

Condition Number, κ: 1.73× 108 1.93× 101

Optimization Cost, Jτ : 8.63× 104 1.02× 102

Table 4.6. Number of iterations to converge to |Jp| < 10−6

Initial Optimal
Gradient Descent: > 1000∗ 27
ILS: 5 3

*Estimation was stopped after 1000 iterations with no
significant improvement in Jp

and initial trajectory, the optimization algorithm was run until a convergence criterion

of (J(ηi+1(t))− J(ηi(t))) < 10−1 was satisfied. The comparison of initial and optimized

trajectories can be seen in Fig. 4.12.

The eigenvalues of d2

dθ2
β(θ), the condition number κ, and the cost J for the initial

trajectories and the optimized trajectories are listed in Table 4.5. The results show that

the condition number, κ, decreases drastically from 1.73× 108 to 19.3. Thus a significant

improvement in the convergence rate of the parameter estimation algorithms, especially

the gradient descent method, can be expected.

The plots of the optimized trajectory show that the oscillation of the suspended mass

improved the simultaneous estimation conditioning involving the suspended mass and

length parameters. While the load cell can correctly estimate the mass given a static or

near static system, the length can only be estimated given a dynamic motion.
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In simulation, the gradient descent and Iterated Least-Squares parameter estimation

algorithms were executed using the initial and optimal trajectories. The convergence re-

sults appear in Table 4.6. As the results indicate, second-order information in the Iterated

Least-Squares method greatly improves convergence over the gradient descent method,

even for the initial, ill-conditioned problem. The benefits of conditioning optimization are

evident in the significantly improved convergence of the gradient descent algorithm. The

optimal trajectory does provide a convergence improvement for the Iterated Least-Squares

method; however, it is less significant.

The convergence path of the Iterated Least-Squares algorithm is shown on contour

plots of the parametric space in Fig. 4.13. In the initial trajectory, the lack of information

about the length parameter leads to the ill-conditioning of the problem. The algorithm

quickly converges to the correct mass yet takes many extra steps to converge to both

parameters. After optimization, the optimal trajectory yields improved conditioning of

the cost basin which allows the algorithm to more directly converge on both parameters

simultaneously.

In simulations with no measurement or model uncertainty, the optimal trajectory

only provides slight improvement in the Iterated Least-Squares convergence rate; how-

ever, in practice, use on experimental systems introduces measurement noise and model

uncertainty which greatly impacts the estimates using the two trajectories. The following

section provides experimental results illustrating this point.
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(b) Contour plot showing convergence in simulation
using the optimized trajectory.

Figure 4.13. Contour plots showing the parameter estimation cost J across the parametric
space with the convergence path shown by the colored dots. The red dot indicates the
initial parameter estimate, the yellow dots show intermediate iteration points, and the
green dot indicates the converged point.
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Table 4.7. Experimental Results

m (kg) ` (m)
Initial Estimate: 0.100 0.60
Measured Baseline Value: 0.124 0.50

Estimate from Initial Trajectory: 0.121 1.11
% Error from Baseline Value: 2.4 122.

Optimal Trajectory Estimate: 0.121 0.51
% Error from Baseline Value: 2.4 2.0

4.7.3. Experimental Results

Using the same initial and optimized control inputs shown in Fig. 4.12, each trajectory

was run on the experimental platform described in Sec. 4.6.2. During each trial, force

data was collected at 300Hz and interpolated to provide continuous data for the estimation

algorithm. Following the data collection, the Iterated Least-Squares algorithm was run

on each set of data to attempt to find a best estimate of the parameter set using the

measured output.

The results of the experiment are shown in Fig. 4.14 and Table 4.7. The impact of an

ill-conditioned problem is accentuated in the experimental results. While both trajectories

provide estimates that are within 2.4% of the mass value, the length parameter estimate

from the initial trajectory has a 122% error compared to only 2.0% with the optimized

trajectory.

Fig. 4.14 shows the predicted force output using the initial parameter estimate with

the blue dotted line before running the Iterated Least-Squares estimation algorithm. After

running the estimation algorithm on both trajectories, the model predicted force output
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Figure 4.14. Plots showing measured force data collected from the experi-
mental trial and predicted force data using both initial and optimized pa-
rameter values.

for the optimized parameters is shown by the red dashed line. The force data collected

by the load cell on the robot platform is shown by the solid black line.
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Examining this data, the initial trajectory results in small angle displacements of the

mass. Since the displacement is small compared to the noise, the model is fit mostly to

noise, providing an inaccurate estimate of the length as seen in Table 4.7. As the mass is

purely a function of the mean of the signal, the signal from both trajectories is sufficient to

provide a close estimate of the suspended mass. Synthesizing a new trajectory with better

conditioning results in oscillations of the mass, which provide greater sensitivity in the

measurement output with respect to the length parameter, resulting in better estimate

convergence.

To summarize the results, using the condition number cost balanced with appropriate

weights of control effort and tracking error results in an improved trajectory while allowing

users to assign importance to each component. Different scenarios will require varying

levels of constraint on control effort and tracking error while attempting to estimate

system parameters. One particular area of improvement is reducing the computational

complexity due to the choice of continuous numerical method. The goal of faster, more

stable performance as shown in the previous chapter motivates the derivation of the

algorithm in discrete time which is presented in the following chapter.
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CHAPTER 5

Information Optimization Using Discrete Mechanics

This chapter provides a discrete-time formulation of the continuous-time Fisher informa-

tion maximization algorithm presented in Section 4.2. The algorithm uses a discrete for-

mulation of the gradient-descent projection-based trajectory optimization algorithm [33]

to find a trajectory that locally maximizes the information of an experimental trajectory

to produce the best estimate of the model parameters.

The motivation for designing an estimation algorithm using discrete mechanics is

two-fold. First, the continuous-time algorithm requires numerical solutions to several

differential equations which provides flexibility in its implementation; however, as demon-

strated in Chapter 3, continuous-time algorithms may result in long computation times

depending on the numerical method that is used. Using a result of much recent work in

the area of discrete mechanics, variational integrators, also known as structured integra-

tors [86], can be used to provide a time-discretized version of the action integral which

results in a symplectic form with stable long-term energy behavior, even with large time-

steps [35]. These integrators have been applied to the simulation of complex mechanical

systems using generalized coordinates with accuracy comparisons to traditional numerical

integrators in [87].
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Second, the continuous-time algorithm requires a continuous cost function which neces-

sitates the approximation of Fisher information, defined as Ĩ(θ) in (4.2) as a continuous

measure along the trajectory. This is an approximation which converges to the actual

Fisher information as the measurement frequency increases. Formulating the optimiza-

tion in discrete-time allows for a discrete cost, which includes the exact Fisher information

of the trajectory.

5.1. Parameter Estimation for Discrete Mechanical Systems

The formulation of the nonlinear least-squares estimator remains the same as presented

in Section 2.2.1; however, the dynamics constraints are now in terms of the discrete

mechanical system. Using the discrete mechanics notation, the nonlinear estimator in

(2.4) can be written as

β(θ) =
1

2

kf∑
k

(ỹk − yk)T · Σ−1 · (ỹk − yk),

where ỹk is the observed state at the kth index of tf/dt measurements.

For the Fisher information maximization algorithm used in this chapter, the gradient

descent method is used to find the optimal set of parameters, θ̂. Therefore, the first

derivative of β(θ) must be calculated w.r.t θ.

Dθβ(θ) =

kf∑
k

(ỹk − yk)T · Σ−1 · Γk,

where

Γk = Dxg(xk, ūk, θ) ·
dxk
dθ

+Dθg(xk, ūk, θ).
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Note that the control ū now includes both dynamic and kinematic inputs as specified in

Section 2.4.2.

The gradient requires the evaluation of dxk
dθ

which can be found using first-order lin-

earizations of xk from the DEL equations. Since ρ and ν are kinematic configurations,

dρk
dθ

and dνk
dθ

are zero for all k. To match notation in the continuous time problem, we note

that the sensitivity ψk is given by

ψk =

 dqk
dθ

dpk
dθ

 .
The first-order sensitivity is thus given by

ψk+1 = Ak · ψk +
∂xk
∂θ

,(5.1)

where

∂qk+1

∂θ
= −M−1 · (D5D1Lk+1 +D6F

−
k+1)

∂pk+1

∂θ
= D2

2Lk+1 · ∂qk+1

∂θ
+D5D2Lk+1

Ak =

 ∂qk+1

∂qk

∂qk+1

∂pk

∂pk+1

∂qk

∂pk+1

∂pk

 .
We refer readers to [31] for the equations representing the components of Ak and M

which are derived and presented in full.
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5.2. Maximizing Fisher Information using Discrete Mechanics

The projection-based trajectory optimization algorithm is used in a similar manner to

the continuous-time case; however, the algorithm itself has been reformulated in [33] into

a discrete-time framework. This discrete version is extended in the following section to

include Fisher information as an additional objective.

5.2.1. Objective Function

The objective function consists of the same three components as the continuous algorithm:

the Fisher information cost, a trajectory tracking cost, and a control cost. Since the

optimization algorithm is formated in discrete-time, the Fisher information can be directly

used in the algorithm versus the continuous-time formulation presented in the previous

work. Since the FIM is a matrix quantity, we use E-optimality, which uses the minimum

eigenvalue of the FIM as the cost metric.

The exact FIM given by (4.1) is used as the information cost. Therefore, the opti-

mization objective function is defined as

(5.2) J =
Qp

λmin
+

kf∑
k=k0

(xk − x̂k)T ·Qτ · (xk − x̂k) + (ūk − ˆ̄uk)
T ·Rτ · (ūk − ˆ̄uk),

where λmin is the minimum eigenvalue of I(θ), Qp is the information weight, x̂k is a

reference trajectory, ˆ̄uk is a reference control signal, Qτ is a trajectory tracking weighting

matrix, and Rτ is a control effort weighting matrix. The weights must be chosen such

that Qp ≥ 0, Qτ is positive semi-definite, and Rτ is positive definite.
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The various weights allow for design choices in the optimal trajectory that is obtained.

The requirements of positive definiteness and positive semi-definiteness of the weighting

matrices are necessary to maintain a locally convex optimization problem including the

fact that λmin ≥ 0 [32]. Increasing the control weight will result in less aggressive trajec-

tories, generally decreasing the obtained information. Using a reference trajectory allows

for an optimal solution that remains in the neighborhood of a known trajectory.

5.2.2. Extended Dynamic Constraints

As with the continuous trajectory optimization method, the discrete first-order sensitivity

ψk must be computed along the trajectory to extend the optimal control algorithm to

include the FIM metric in (5.2). Appending the discrete parametric sensitivity to the state

vector as an additional dynamic constraint allows for variations in ψk in the optimization

algorithm. Including the dynamic and kinematic control inputs, the extended state will

be defined by x̄k = (xk, ψk), and ηk = (x̄k, ūk) which defines a curve that satisfies the

nonlinear system dynamics.

5.2.3. Discrete Projection Operator

A discrete version of the projection operator given in (2.17) can be defined to produce

feasible trajectories from the infeasible trajectory produced during the descent calcula-

tions. The discrete projection operator uses a discrete-time stabilizing feedback law to

take a feasible or infeasible trajectory, defined by ξk = (ᾱk, µ̄k), and maps it to a feasible

trajectory, ηk = (x̄k, ūk). Proofs of the discrete projection operator were carried out by

Johnson [33].
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Using the discrete form of the projection operator with the appended sensitivity dy-

namics results in the following

P (ξk) :


ūk = µ̄k −Kk(x̄k − ᾱk)

xk+1 = solution to (2.22)

ψk+1 = equation (5.1).

5.2.4. Optimization Algorithm

Algorithm 5.1 reflects the updated notation of the iterative method using a gradient

descent approach to solve the discrete optimization problem. Each iteration requires a

descent direction, ζk = (z̄k, v̄k) to be computed from the following equation [32]:

(5.3) ζk = arg min
ζk

DJ(P (ξk)) ◦ ζk +
1

2
〈ζk, ζk〉,

such that

z̄k+1 = Ākz̄k + B̄kv̄k,

where ζk ∈ TηkT , i.e., the descent direction for each iteration lies in the tangent space

of the trajectory manifold at ηk. The components of the descent direction ζk = (z̄k, v̄k)

are defined by z̄k, the perturbation to the extended state, and v̄k, the perturbation to the

control. The quantity 〈ζk, ζk〉 is a local quadratic model computed as an inner product

of ζk. Matrices Āk and B̄k are the linearizations of the extended state dynamics. The

descent direction (5.3) can be computed by solving an LQ regulation problem which is

detailed in Appendix B.2.
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Algorithm 5.1 Structured Trajectory Optimization

Initialize η0
k ∈ T , tolerance ε, i = 0

while DJ(ηik) ◦ ζ i > ε do

Calculate descent, ζ i:

ζ i = arg minζi DJ(P (ξi)) ◦ ζ i + 1
2
〈ζ i, ζ i〉

minimizing (2.19) to compute ζ i

Compute γi with Armijo backtracking search

Calculate the infeasible step:

ξi+1
k (t) = ηik + γiζ ik

Project trajectory onto dynamics constraints:

ηi+1
k = P (ξi+1

k )

i = i+ 1

Given the descent direction ζ i, a backtracking line-search of the projection, P (ηi+γiζ i),

provides a feasible trajectory assuming the step size γi satisfies the Armijo sufficient

decrease condition [27]. Iterations upon the feasible trajectories continue until a given

termination criteria is achieved.

5.3. Discrete Information Optimization Results

To examine the results of the discrete-time formulation, the algorithm is tested in simu-

lation on the 2-link cart-pendulum robot from Section 4.3. The robot has two dynamic

configuration variables, q = (φ1(tk), φ2(tk)), and one kinematic configuration variable,

ρ = x(tk), where x(tk) is the horizontal displacement of the robot, and φi(tk) is the

rotational angle of each link as shown in Fig. 4.1.

The input to the robot for the discrete-time experiment is the position x(tk) which is

treated as a kinematic input. The robot can move in one dimension with positive motion

to the right. Rotational friction is modeled at each pendulum joint, but the joints remain
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Figure 5.1. Comparisons of the trajectory before and after Fisher informa-
tion optimization.
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unactuated. For comparison to the continuous-time results, the goal of the optimization

algorithm and the simulated model remains the same as in Section 4.3 - estimating the

mass of the top pendulum link m1 and the damping coefficient c of the joints.

5.3.1. Discrete-time Model Approximation

An approximation of the continuous Lagrangian in discrete time is found using (2.23). The

same values for model parameters are used as defined in Section 4.3. We will assume that

sensor measurements occur at 50 Hz, which will also be used as the simulation time step,

dt. In general, measurements may occur at a lower frequency than the simulation time-

step. In that case, Σ−1
k should be set to zero for all time steps k in which measurements

do not occur.

5.3.2. Optimization Results

The optimization algorithm was run until a convergence criterion of |DJ(ξk) ◦ ζ| < 10−2

was satisfied, starting from an initial cost of 23.0. A comparison of initial and optimized

trajectories can be seen in Fig. 5.1a-b. The optimized trajectory improves the Fisher

information of the measured trajectory by a factor of 102. These results can be seen in

Table 5.1. Additionally, the Fisher information gained over time is shown in Fig. 5.1c.

The optimized trajectory greatly exceeds the rate of information gained compared to the

initial trajectory. Using the Cramer-Rao bound [22], error estimates in the parameter set

will decrease up to a factor of 102 due to this increase in Fisher information.

One motivation for creating a discrete-time version of the information maximization

algorithm is to reduce computation time compared to the continuous version. Since the
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Table 5.1. Optimization Results

λ1 λ2 J
Initial: 5.95× 103 543.2 23.0
Optimized: 6.91× 106 7.34× 104 9.0
- - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Fisher Information Matrix

Initial:

[
5.94× 103 98.6

98.6 544.9

]

Optimized:

[
6.90× 106 2.79× 103

2.79× 103 8.48× 104

]

Table 5.2. Algorithm Execution Time

Discrete-Time Continuous-Time
Avg. Time per iteration: 39.9 s 762.5 s
Number of Iterations: 2 36
Min. Eigenvalue Improvement: factor of 135 factor of 110

structured integration allows for stable results at large time steps, such as 0.02 s used for

this results, the computation time for each iteration is reduced by a factor of 19 as shown

in Table 5.2.

While these results show the discrete-time algorithm converging in fewer iterations,

we do not expect this trend to be generally true. In this case, the numerical differences

happen to produce a slightly more efficient descent direction. However, even on a per

iteration basis, the improvement in computation time is significant. Iterations of the

continuous and discrete algorithms were timed in Mathematica on the same 3.0 GHz

Intel i7 machine. Both algorithms return similar optimized costs, resulting in expected

information improvements of 102.
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Another concern may be that the resulting trajectory of the discrete algorithm does not

precisely track the continuous trajectory. While the example system and model parame-

ters are the same for both sets of results, we have incorporated the notion of kinematic

control inputs into the discrete algorithm. This results in a different set of states compared

to the continuous algorithm and different weights, Qτ and Rτ . Additionally, the formu-

lation in discrete time results in discrete momenta states pk rather than velocity states.

This also modifies the local quadratic approximation of the cost function, Jτ . Finally,

the discrete algorithm uses the exact Fisher information, which slightly modifies the cost

compared to the continuous approximation. Therefore, we expect that the algorithms

will both achieve the goal of maximizing Fisher information but under slightly different

objectives due to these differences which results in the varying trajectories.

5.3.3. Conclusion

This chapter presented a discrete-time method to automatically maximizing the Fisher

information with respect to a set of model parameters by optimizing the robot’s trajectory.

We compare the method and results to the continuous-time analog from Section 4.2. In

both cases, the algorithms significantly result in higher information which improves the

estimation of uncertain parameters within the system model. The discrete formulation

presented in the paper results in a factor of 19 improvement in the computation speed

per iteration over the continuous algorithm while maintaining similar performance on the

objective function. The algorithm also incorporates the actual Fisher information given a

discrete set of measurements along the robot’s trajectory rather than the approximation

used in the continuous-time algorithm.
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While computational speed has been significantly improved, expanding the dimension-

ality of the system still poses a formidable problem in terms of computation time. While

the algorithm applies to larger systems, the need for extended state representations sig-

nificantly affects general scalability. In order to allow for use in a learning type algorithm

where iterations can be performed on-line as information is gained, a different method

of optimal control may be required. The following chapter investigates information op-

timization using a real-time control algorithm to create an on-line learning method with

an experiment using the Baxter Research Robot.
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CHAPTER 6

Real-time Information Optimization for Learning

A fundamental goal of artificial intelligence and learning in robotics is to provide the

means for a robot to automatically synthesize actions which improve estimates of the

robot’s internal dynamics and dynamical interactions with real-world objects. From an

early age, humans are able to constantly learn and improve upon their motor skills and

interactions with objects in the physical world. We aim to provide this form of learning on

robots using real-time processing of feedback from active exploration of the environment.

Since the general problem of model synthesis and learning remains a formidable one,

we restrict ourselves in this paper to creating a method for real-time active synthesis of

dynamic trajectories to estimate a single model parameter in a known dynamical model.

The algorithms in Chapters 4 and 5 have demonstrated trajectory optimization algo-

rithms for information maximization on continuous and discrete systems. The algorithms

successfully improve the expected information by perturbing the trajectories using first-

order optimization techniques. While effective, these algorithms remains too computa-

tionally expensive for real-time application.

Sequential Action Control (SAC), the model-based control approach introduced in

Section 2.3.2, has shown promise in simulation as a closed-loop receding-horizon style
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controller that can compute optimal actions in real-time for nonlinear systems, similar to

a nonlinear model predictive controller [88, 89]. Results have shown that the algorithm

can outperform off-line trajectory optimization techniques on a number of canonical ex-

amples. The implementation in this chapter encompasses one of the first practical demon-

strations of the algorithm on a robotic platform, including coupling of the algorithm with

a nonlinear state observer as described in Section 6.2.2.3.

This chapter presents the experimental trial of the SAC algorithm coupled with an

on-line estimator for real-time active estimation of a dynamical system using a Baxter

Research Robot. The Baxter Robot has been used as a practical platform for a number

of studies [90–92] while also presenting a number of challenges including high compliance

and actuator saturation. Despite these potential sources of unmodeled dynamic effects,

results show that the estimator successfully converges to the actual parameter value across

several trials. Section 6.1 provides an overview of the trajectory synthesis and estima-

tion algorithms. The specific implementation details for Baxter and the suspended load

estimation task are provided in Section 6.2, and Section 6.3 provides results from several

trials of the real-time estimation task.

6.1. Real-time Control Structure

This section presents a detailed overview of the active trajectory synthesis and estimation

problem which is implemented in Section 6.2. As shown in Fig. 6.1, there are two primary

modules interacting with the robot hardware: the SAC controller for trajectory synthesis

and the nonlinear least-squares estimator. At the highest level, the least-squares estimator

requires the control inputs provided by the SAC controller to compute a predicted output
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Figure 6.1. Overview of the real-time control structure.

which is compared to the actual measurements provided by the robot. The SAC con-

troller is updated with new parameter estimates and state estimates by the least-squares

estimator and optionally can receive state feedback directly from the robot hardware if

available. These modules can be run asynchronously and at different rates with the use

of a nonlinear state observer model.

For this implementation, it is assumed that one parameter is uncertain with additive

noise on observer measurements but negligible process noise. For SAC, the state is usually

derived assuming control-affine dynamics as opposed to the general nonlinear dynamics

model presented in Section 2.2.1 [18]. Thus, the model of the system is defined as

ẋ =f(x, θ) + h(x, θ)u(6.1)

y =g(x, u, θ) + wy
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where x ∈ Rn defines the system states, ỹ ∈ Rh defines the measured outputs, u ∈ Rm

defines the inputs to the system, θ ∈ R defines the parameter to be estimated, and wy is

additive output noise where p(wy) = N(0,Σ).

6.1.1. Nonlinear Least-Squares Estimator

While the robot is executing a motion, a nonlinear least-squares estimator is used on-line

to update the estimated value of the parameter as well as the robot state. The gradient

descent version of the estimator is used as presented in Section 2.2.1.

Since the estimator requires a predicted output, ỹ(t) which is based on current es-

timates of θ and x(t), a nonlinear state observer is also required for systems with-

out full-state feedback. While any numerical differential equation solver may be suf-

ficient, for this implementation, we are using the trep software package available at

http://nxr.northwestern.edu/trep.

6.1.2. Sequential Action Control

The SAC control process is detailed in Section 2.3.2. The implementation in this chapter

requires SAC to include a cost on the Fisher information of the uncertain parameter. For

the Baxter experiment, we assume that the measurement noise of the system is normally

distributed with zero process noise. Therefore the Fisher information is given by

(6.2) I(θ) =

kf∑
k=k0

Γθ(tk) · Σ−1 · Γθ(tk),

which is equivalent to the information metric (4.1) presented in the previous optimization

algorithms. As detailed in Chapter 4, a cost function on Fisher information from (4.1)



125

also requires the simulation of the gradient of x w.r.t. θ, i.e. ψ(t) = d
dθ
x. These additional

states are referred to in the paper as extended state dynamics and notated as x̄ = (x, ψ).

The SAC cost function in (2.20) is modified to maximize information with the following

form

(6.3) Jcost =

∫ tf

t0

l(x̄(t)) dt+ s(x(tf )),

where

l(x̄(t)) =
[
Γθ(t) · Σ−1 · Γθ(t)

]−1
+ x(t)T ·Qτ · x(t),

i.e., the running cost involves minimization of the inverse of the information and an

optional trajectory tracking cost to bias the system toward a particular part of the state

space. Additionally, an extended adjoint system ρ̄ is computed using the extended state

x̄ in the same manner as presented in Section 2.3.2.

6.2. Baxter Implementation

This section describes both the problem formulation and software specific implementation

of the control structure described in the previous section on the Baxter Research Robot

created by Rethink Robotics shown in Fig. 6.2 [93]. Results from experimental trials are

presented in Section 6.3.

6.2.1. Problem Description and Model Formulation

To test this control paradigm in real-time on a practical robotic system, we chose the task

of determining the string length of a suspended payload from one of Baxter’s grippers

using a load cell as the sole output to the estimator. This configuration necessitates
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Figure 6.2. Baxter performing real-time active parameter estimation on the
length of a suspended payload.

active motion to estimate the string length as the Fisher information is zero when the

robot is stationary. To simplify the control of Baxter, we chose to approximate the end

effector as kinematic and control motion only in the Cartesian x-axis, xB. The equations

of motion for the system are given by the following,

f(x, u, θ) =



ẋB

u

φ̇

u
`

cosφ− g
`

sinφ


where u is the x-axis acceleration of the gripper, m is the known mass suspended from

the robot, g is the gravitational constant, and ` is the length of the string, which will be
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estimated. Additionally, the equation for the force output Fs is

ỹ(x, u, θ) = Fs = mg cosφ−m`φ̇2 − u sinφ.

It is assumed that the trajectories will maintain tension in the string; therefore, the

distance between the robot and mass is fixed. Given this system model, the extended

state x̄ ∈ R8.

6.2.2. Experimental Implementation

As shown in Fig. 6.1, there are essentially two separate modules interacting with the

robot hardware: the SAC trajectory synthesis module, and the nonlinear least-squares

estimator module. In this section we describe how each of these modules is implemented

for the Baxter experiments.

The backbone of communication between modules and the robot is provided by the

Robot Operating System (ROS) [84]. ROS provides the ability to asynchronously run the

control and estimation modules, implemented as ROS nodes, and Baxter natively uses

ROS as the primary API for motion commands. Three primary nodes are employed: the

SAC control node, a measurement receiver node, and the estimator node.

6.2.2.1. Baxter SAC Node. As mentioned in Section 6.2.1, the end effector of the

Baxter robot is approximated as a kinematic input to the dynamic suspended mass system.

The dynamic model for the suspended mass system assumes only planar motion, and the

kinematic input moves perpendicular to gravity in this plane. It follows that the SAC

module produces target locations along a one-dimensional line that Baxter’s end effector

should follow. A joint velocity controller for Baxter’s right arm is used to stabilize the
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right end effector to these target locations. To avoid issues with kinematic singularities

in the manipulator while controlling to these target locations, this one-dimensional line is

expanded to a candidate set of closely-spaced end effector targets in SE(3). An off-line

computation is done to solve the inverse kinematics problem for each of the targets in

the set producing a set of target joint angles for each target. These joint angle targets

are then stored to disk as a lookup table between target horizontal positions, like those

produced by SAC, and target joint angles. During an experimental run, the desired joint

position, velocity, and acceleration data is sent using a Joint Trajectory Publisher to

Baxter’s internal controller which runs a high frequency real-time loop to control each of

the joints.

6.2.2.2. Baxter Measurement Receiver Node. The payload is attached to Baxter’s

end effector through a one-dimensional load cell. A microcontroller samples the load cell at

100 Hz and transmits the measured forces via a serial link back to a client computer which

is communicating with Baxter over an Ethernet connection. These force measurements

represent the ỹ(ti) in (2.4). The load cell has been calibrated prior to the experiment to

convert the load cell output to a force (N). The resulting force is timestamped as it is

received and published at 100 Hz for use by the estimator node.

6.2.2.3. Baxter Estimator Node. The estimator node subscribes to the actual end

effector trajectory which is provided by the Baxter API. These measurements are used

to generate the ỹ(ti) terms in (2.4) through the use of a nonlinear state observer. As

mentioned in Section 6.1.1, the trep software package is used as the state observer. The

trajectory is used as the input and trep provides the predicted state evolution of the

suspended load. From these states, the predicted force y(t) can be calculated.
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At a frequency of 2 Hz, the estimation module solves the optimization problem de-

scribed by (2.3), updating the estimate of the string length. This frequency was chosen as

a conservative rate at which the estimator has enough time to provide an update; however,

the rate can be modified depending on the required computational time for the particular

system. This parameter estimate and new state estimate are provided as a service to the

SAC node which queries the service at the start of each computation. Updates to the

string length estimate and expected state are reflected in this service call.

6.3. Experimental Results using Baxter

This section presents the results of real-time experimental trials of the algorithm using

the Baxter robot. A total of 9 trials are presented with initial estimates of the length

parameter, ` that varied from 0.308 m to 0.468 m with the actual string length at 0.368 m.

The tests were conducted for a total of 6 seconds for each trial. For each trial, the initial

position of the gripper was set to xB = −0.25 m and the suspended load was hanging in

a stationary position.

The convergence of the parameter estimates over time for all 9 trials is shown in Fig.

6.3. The estimates clearly converge toward the actual string length which is noted by

the dashed horizontal line. Qualitatively, the rate of convergence across all the trials

is similar, with estimates beginning to converge around 2 to 4 seconds. This suggests

that for this system, the trajectories generated by the SAC algorithm provide relatively

similar levels of information despite the initial estimate. Since the estimator cost may

not be convex, initial estimates too far from the actual value may not converge to the

real value given multiple local minima. The mean estimate of ` from the 9 trials after 6
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Figure 6.3. Experimental trials on Baxter using different initial estimates
of the string length. The dashed line indicates the actual measured length.
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Figure 6.4. Measured and predicted force from one Baxter trial over time
for `0 = 0.35 m.
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Figure 6.5. Expected information accrued over time during one Baxter trial
for `0 = 0.35 m.

seconds was 0.367 m with the actual string length set to 0.368 m. The standard deviation

of the final estimates is 0.0042 m.

The measured and predicted force data is shown from a single trial in Fig. 6.4. The

figure shows that as the suspended load begins to react to the control inputs, providing a

much better signal for the estimator to track, the estimates begin to converge. It is also

noted in this figure that the measurements taken by the load cell begin to saturate the

hardware setup around 2.5 N, however, the estimator is still able track the phase of the

system despite this saturation.

Additionally, Fig. 6.5 shows the expected information accrued over time from one

experimental trial. A large increase in information begins to accrue as the suspended load

is excited, leading to the convergence of the parameter estimate. This information provides

a best-case bound on the parameter estimate through the Cramer-Rao bound [22]. With

the estimator now validated, the following section examines the impact of the parameter
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(a) Incorrect parameter plan failing to swing
the mass into the box.

(b) Correct parameter plan successfully swing-
ing the mass into the box.

Figure 6.6. Baxter near the completion of the dynamic task for both incor-
rect and correct parameter plans.

estimates on the open-loop execution of a dynamic trajectory involving the Baxter with

a suspended load.

6.3.1. Impact on Trajectory Planning and Execution

To demonstrate the effect of incorrect parameter estimates during the execution of an

actual task, an experiment is conducted where Baxter must swing a suspended ball into a

nearby box. In order to force the dynamics of the system to be exploited, Baxter’s range

of motion is constrained in software to only provide motion in the horizontal x-axis. As

shown in Fig. 6.6, the suspended ball must be swung in a dynamic motion in order to

clear the edge of the box.
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Figure 6.7. Endpoint reference compared to actual endpoint position of the
Baxter trial with `0 = 0.45 m.

The process for estimation of the string length is completed in an identical fashion to

the prior experiment. The SAC controller is executed in real-time to provide a perturba-

tion to the system which then provides length estimates in real-time from the collected

force data. This estimation is executed for 8 seconds from an initial length estimate of

0.45 m. The actual string length is 0.368 m. During the trial, the estimator converges on

a refined estimate of 0.370 m which is then used to plan the task trajectory.

The generated and executed trajectories for the estimation trial are shown in Fig.

6.7. As discussed in Section 6.2, the motion of the gripper is controlled to move along

the Cartesian x-axis to follow the generated reference. The estimator is given the actual

endpoint position which allows for accurate prediction of the load, and SAC receives the

estimated state from the estimator for trajectory synthesis.

Once the uncertain parameter has been accurately identified using the SAC active

estimator, the task trajectory must be synthesized. At the end of the estimation process,
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Figure 6.8. Simulated trajectory plans for the suspended mass with the
correct length at 0.37 m and incorrect length at 0.45 m.

Baxter’s end effector is returned to the zero position and the motion of the mass is allowed

to naturally dampen while the task trajectory computation completes.

The selection of an appropriate optimal control method is dependent both on the

computational requirements and level of dynamic motion in the task. Sequential Action

Control was selected for the on-line estimator since real-time performance was desired.

However, the SAC algorithm relies on a predetermined set of dynamics for the future time

horizon when computing an optimal action as opposed to optimizing a control curve over

the entire horizon. For the estimator, this is acceptable since the model parameters are

incorrect, and future controls are largely irrelevant relative to the measurement feedback.

Once the parameters are known, a complete trajectory optimization method can then be

used.



135

Table 6.1. Baxter Experimental Task Results

Initial Length Without SAC With SAC
Estimate (m): Estimation: Estimation:

0.308 Fail Success
0.328 Fail Success
0.348 Fail Success
0.368* Success Success
0.388 Success Success
0.408 Fail Success
0.428 Fail Success
0.448 Fail Success
0.468 Fail Success

*actual string length

Planning for the task trajectory is completed using the trep software package. The

software contains the original discrete trajectory optimization algorithm, which the ex-

tension in Chapter 5 is based on. For this example, a box is placed 0.45m to the left of

the suspended mass. The dynamic task is to swing the mass over the box so that it lands

inside the box. Two trajectories are then calculated. The first is using the incorrect initial

estimate of the string length at 0.45 m. The second is the improved estimate from the

SAC controller at 0.37 m. Figure 6.8 shows the predicted path of the ball using the actual

string length for both plans. As shown in the figure, the trajectory using the incorrect

estimate falls short of the box opening.

A total of 18 trials were run on the Baxter robot to evaluate the task performance

using active estimation. Using the same distribution of 9 initial length estimates from

Fig. 6.3, the task was at each value with SAC estimation and directly using the incorrect

estimate. If the suspended mass landed inside the box at the end of the trial, the trial is

considered a success. Any trial with the mass outside of the box at the end of the trial

resulted in failure.
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The results of the trials are shown in Table 6.1. Without estimation, the task is

successful with only two length values - the actual value of 0.368m and a slightly longer

length of 0.388m. With SAC estimation the task is successfully completed from each

initial length estimate for all 9 trials.

The results demonstrate that with the open-loop trajectory plans, it is important to

have good estimates of the model parameters for model-based control. Using least-squares

estimation techniques along with the SAC algorithm can provide an automated real-time

learning method for parameter estimation for use in control of dynamical systems.
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CHAPTER 7

Conclusion

Models are continuing to become more important as the complexity of the systems to

control increases. Better controllers can be developed for these systems given accurate

mathematical models of the system dynamics. While people develop the skills to re-

fine models over long periods of time, it is advantageous for a robot to have the ability to

quickly synthesize appropriate trajectories for estimation of parameters within these mod-

els. To this end, this thesis has demonstrated several algorithms using local optimization

techniques to enable robots to better estimate parameters for dynamical systems.

7.1. Summary of Contributions

The focus of this thesis has been motivated by the biomechanical case-study in Chapter

3. The results from the study showed the benefit of using structured numerical techniques

for simulation and optimal control to improve stability and computational performance

in the biomechanical system. Furthermore, the study showed the impact of variations in

important parameters such as the wrapping radius on the simulated trajectory.

Taking these results into account, the continuous version of the projection-based infor-

mation optimization algorithm was developed in Chapter 4. The goal of the algorithm was
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to maximize the minimum eigenvalue of the Fisher information matrix as defined by the

E-optimality criterion. An experiment was performed using a cart and double pendulum

system with two uncertain parameters. Using the optimization algorithm, the information

metric increased by a factor of 103. Experimentally, the precision of the parameter esti-

mate improved by an order of magnitude. The conditioning of the least-squares estimator

was also studied in Chapter 4. A cost function on the condition number of the estimator

Hessian resulted in a similar form of the optimization algorithm. Using the algorithm

with a cart-pendulum system, the condition number was optimized and the convergence

rate improved by two orders of magnitude.

While the continuous algorithm provided good results, the computational load was

high as demonstrated in the biomechanical case-study. To improve the computational

performance, the algorithm was derived in Chapter 5 using the structure preserving dis-

crete mechanics techniques. The discrete algorithm was tested in simulation on the same

cart and double-pendulum system as the continuous information maximization system.

The result was an algorithm which provided a similar increase in the information metric

with a factor of 19 reduction in the computation time per iteration.

In order to achieve real-time performance from an information-based algorithm, a

different trajectory optimization algorithm was used in Chapter 6. The Sequential Action

Control algorithm provided real-time computation of optimal control actions which could

be modified to use an information-based cost function. The result was tested on the

Baxter Research Robot with a load suspended from the manipulator endpoint. In real-

time, a least-squares estimator was run on the uncertain length of the string suspending

the load while a trajectory was synthesized. In 9 trials with different initial estimates of



139

the length, the estimator successfully converged to within 1% of the actual string length.

Using this result, a dynamic task was run in which Baxter must swing the suspended load

into a nearby box. Using the projection-based optimization algorithm on the initial and

estimated values of the length parameter resulted in successful task completion using the

estimated length of 0.37 m. The task was not successful with the initial length estimate

of 0.45 m.

7.2. Selecting a Method

Throughout this thesis, a variety of cost functions and numerical methods have been im-

plemented. While the motivation for each algorithmic choice is detailed in the chapters,

a high-level view of the relationship between algorithms is useful when selecting an ap-

propriate method for a particular application. The common thread through all of the

methods is a desire to synthesize trajectories that have some impact on an information

metric. The algorithmic design choices can be separated into two parts - the objective

and the numerical method.

The first consideration is the objective. If there is only a single uncertain parameter

within the model, information maximization as detailed in Chapter 4 is the most desirable

metric. Conditioning optimization, presented later in the chapter is only applicable when

there are multiple parameters to be estimated. If the application requires estimation of

multiple parameters, the choice then depends on the estimation method that will be used.

Second-order Hessian based estimators reduce the need for conditioning of the problem

since the curvature of the solution is taken into account. However the computational
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effort is greater than with a simple gradient descent estimator which would require a well-

conditioned problem. The desire for both multiple parameter estimates combined with a

gradient descent estimator requires use of a conditioning objective for estimation.

It is also important to note that the two primary objective functions presented in this

thesis, information maximization and conditioning, are purely exploitative cost functions.

For the scope of this work, an exploitative algorithm refers to one that relies only on

the current best estimate of information and parameters to compute future iterations. In

each of these algorithms, the current best estimate of the parameter set is used at each

iteration. For applications which may have bimodal or more complex parametric belief

maps, the use of an explorative cost may also be appropriate. Instead of relying solely on

the current best estimate, an explorative cost may use a distribution of current estimates

or a sampling method to find a more global solution. These objectives are commonly seen

in simultaneous localization and mapping (SLAM) work [94–96] and ergodic exploration

algorithms [97,98]. Extension of the algorithms presented in this thesis to an exploration

application may be an interesting area of future work.

Following the selection of objective, the numerical method must be considered. Using

a continuous-time method such as the projection-based trajectory optimization algorithm

in Chapter 4 results in a well-defined optimization problem over an entire time-series of

controls. This is crucial when a task requires fine control in the state space over time,

typically requiring the optimization of the complete control sequence in time. The con-

tinuous nature is important when the time-scales may not be readily known and adaptive

time-stepping is needed.
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If computation time becomes constrained, a solution can first be attempted using

discrete mechanics theory, such as the method in Chapter 5 which still preserves the

predictive nature of the trajectory optimization. In the case of tight constraints on com-

putation, or real-time requirements, an optimal control method such as the Sequential

Action Control algorithm in Chapter 6 may allow for fast computation at the expense

of forward-looking control signals. The advantage of Sequential Action Control is that

only the control value at the current time is optimized, resulting in much faster com-

putation. This algorithm works well for the information maximization objective as the

perturbations do not have strict constraints in the state-space over time. When a task

has these strict time and state requirements, such as swinging a suspended payload into

a box, optimization of a full time-series of controls may be required.

7.3. Future Research Directions

This work represents only the first step toward improving robot learning on physical

systems by exploiting dynamic models. One possible improvement may include the use of

Lie groups as the fundamental tool to build the dynamic models. While the models can be

more complicated to create, they can facilitate better-posed solutions to the optimization

problems, reducing some of the singularities and angle wrapping issues that occur when

modeling certain robotic systems, especially non-holonomic systems.

Additionally, the extension to multiple parameters only requires that an optimality

metric is set; however, it would be useful for a system to realize which parameters need

to be estimated in the first place. This could be achieved through forms of sensor fusion

and covariance estimation as well as an exploration-based search algorithms. Eventually,
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the addition of a model creation and learning algorithm would enable a robot to develop

not only estimates of the parameters, but also internal structure without prior knowledge

of the internal dynamic model.

Taking this idea a step further leads to the problem of “unknown unknown” parame-

ters. The knowledge of model topology is needed in this thesis to estimate the unknown

values of the parameters; however, in some cases, the topology itself may be uncertain. A

promising direction for further work is the extension of the estimation to hybrid systems

with varying topologies. A tractable problem may include a robot arm with varying num-

bers of joints. In this case, the estimator would function over all hybrid configurations of

the arm to generate a trajectory which excites the system in a way that can best identify

the configuration mode.

This manner of estimation will pose a number of problems as well, primarily stemming

from the explosion of complexity with larger mode sets. Avoiding the combinatorial com-

plexity that is common in hybrid system optimization is critical to creating an algorithm

which can perform well on reasonable time scales. Similar projection based trajectory op-

timization algorithms have been applied to mode scheduling and may be useful in tackling

the mode estimation problem in the future [99].

While the formulation of the algorithm allows for general, nonlinear dynamics, limi-

tations on tractable noise models remains a formidable challenge. Since process noise is

assumed to be negligible for the purpose of this algorithm, results may only be useful on

systems with accurate input models. Although the algorithm should improve prediction

on most systems, predicted precision improvements in simulation may be overestimated

compared to the experimental results due to unmodeled bias and system modeling errors.
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Still, with appropriate selection of weighting matrices on controls and tracking error,

improvement in estimator performance is expected compared to arbitrary choices of the

experimental trajectory. The continued development of dynamics-based methods for ro-

bot learning will allow robots to learn and better interact with real-world objects and

tasks in physical environments.
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APPENDIX A

Continuous Cylindrical Wrapping Model

An important part of modeling human biomechanics, particularly the upper limb is the

creation of muscle wrapping surfaces. These surfaces simulate the natural wrapping that

occurs around the bones and joints in the upper limb. For use with the variational

integrator system derived in Chapter 3, the wrapping surface will be assumed to be

completely passive and frictionless, performing no work on the muscle or skeletal structure.

In order to satisfy this requirement, a continuous model is needed, including derivatives of

the wrapped muscle length w.r.t. changes in the generalized joint coordinate. This section

presents a derivation of the continuous cylindrical model which is modified from [100].

To begin, two tendon attachment points are defined, p1 and p2. For this implemen-

tation, the wrapping surface must completely lie between these two points as the frames

move. The cylinder and point of rotation are both defined in the same reference frame as

p1, so there is no relative movement between p1 and the wrapping surface. The transfor-

mation, T12 defines the transformation from p1 to p2. For many systems, this will include

a translation, followed by a generalized rotation, followed by another translation. The

point, px defines the point from which the cylinder and axis of rotation are defined. Both
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Figure A.1. Coordinates used for unwrapped cylinder model. Graphic mod-
ified from [100].

the cylinder and axis of rotation can be defined by unit vectors, where Vc denotes the

cylinder axis and Vr denotes the rotation axis.

Therefore, it is assumed that p2 is only a function of one generalized coordinate, which

will be the angle of rotation, φ around Vr. Additionally, several other unit vectors and

quantities are defined to assist in the calculation of the wrapping geometry. Ultimately,

the two points that are tangent to the wrapping surface, E1 and E2, and the arclength

around the cylinder must be computed.

A.1. Calculating the Wrapping Condition

The system is constrained to only wrap around one direction of the cylinder, thus ensuring

that it will be wrapped correctly even if the line between p1 and p2 does not pass through
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the cylinder. It is assumed that the cylinder axis of rotation, Vc is defined such that the

tendon from p1 to p2 wraps in the positive direction around Vc.

The condition for wrapping is given by the following equation

(A.1) (px − p1) · (Vc × (p2 − p1))

|Vc × (p2 − p1)| ,

where |·| denotes the Euclidean norm. If (A.1) is less than the radius, r, including negative,

the tendon wraps. If the value is positively greater than r, the tendon does not wrap. This

assumes that the joint cannot rotate more than one revolution, otherwise a discontinuity

will occur. However, in musculoskeletal modeling, this should not present a problem.

A.2. Calculating the Wrapped Tendon Length

If the wrapping condition is not satisfied, the length of the tendon is simply

|p2 − p1| .

If the wrapping condition is satisfied, a few intermediate quantities are calculated to make

the problem manageable. The first quantity is the shortest distance from each tendon

point to the cylinder axis. Note that px can lie anywhere on the defined cylinder axis,

though will probably be the origin of the definition. For either p1 or p2, the equation is

given by

g1,2 = |(p1,2 − px)× (p1,2 − (px + Vc))| .
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The distance from p1 and p2 to the face of the cylinder is also needed, which is just the

third side of a right triangle given by

`1,2 =
√
g2

1,2 − r2.

Next the unit vectors that are parallel and perpendicular to this line are computed

from each tendon point to the cylinder axis. The parallel components are denoted V1c

and V2c and the perpendicular components are V1p and V2p.

The equations are as follows,

V1p,2p =
Vc × (p1,2 − px)
|Vc × (p1,2 − px)|

V1c,2c =
Vc × V1p,2p

|Vc × V1p,2p|
.

Now, points p1 and p2 are projected onto the cylinder at the shortest distance. These

points will be denoted as E1p and E2p. The equation is

E1p = p1 + (g1 −
r2

g1

)V1c + r

√
1− r2

g2
1

V1p

E2p = p2 + (g2 −
r2

g2

)V2c − r
√

1− r2

g2
2

V2p.

The angle between E1p and E2p must also be computed to find the arc length of the

path around the cylinder. This is the angle of the points projected on a cross section of
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the cylinder. The equation for this angle is given by

m = (px − E1p) ·
(E1p − E2p)× Vc
|(E1p − E2p)× Vc|

β = π − 2 arcsin
[m
r

]
.

Note that in this chapter, β represents the wrapping angle as opposed to an estimator

from the prior uses in the thesis. Now that the angle has been computed, the last quantity

needed is the parallel distance between the tendon points. This is given by

h = (p2 − p1) · Vc.

Using the unwrapped cylinder model, and similar triangles, the total length of the

wrapped tendon `WT is given by

`WT =
√
h2 + (`1 + `2 + rβ)2.

If the locations of the actual tangent points on the cylinder are of interest, the points are

given by:

E1 = E1p + h1Vc

E2 = E2p − h2Vc,

where

h1,2 =
h`1,2

rβ + `1 + `2

.
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A.2.1. Derivatives of the Muscle Length

In order to use the virtual work principle to solve for the muscle moment on the joint, the

derivative of the length w.r.t. the joint φ is required. Using the derived equations for the

length of the tendon wrapped around the cylinder, the derivative can be readily calculated.

Assume that p1 is fixed with respect to the cylinder and rotation axis, therefore, any

derivative of a quantity only involving p1 is equal to zero. Also assume that p2 is related

to p1 by a set of fixed translations and one rotation around an arbitrary axis defined at

px. Given these assumptions, and that p2 = T12 · p1, the derivative of p2 with respect to

φ is given by

dp2

dφ
=
dT12

dφ
· p1.

The remaining equations will be in terms of the derivative of p2 with respect to φ

which will be denoted by Dp2 for simplicity. If the condition from (A.1) is not satisfied,

the tendon is not wrapping and the derivative of the length is given by

dLt
dφ

=
(p2 − p1) ·Dp2

|(p2 − p1)| .

If the tendon is wrapping, each of the intermediate quantities are differentiated to

compute the derivative of the length. Again the simpler D notation will be used. The

equations are derived as follows

Dg2 = −(Dp2 × Vc) ·
(p2 − px)× (p2 − (px + Vc))

|(p2 − px)× (p2 − (px + Vc))|

DV2p =
(Vc ×Dp2)

|Vc × (p2 − px)|
− (Vc × (p2 − px)) · (Vc ×Dp2)

((Vc × (p2 − px)) · (Vc × (p2 − px))3/2
(Vc × (p2 − px))
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DV2c =
Vc ×DV2p

|Vc ×DV2p|
− (Vc × V2p) · (Vc ×DV2p)

((Vc × V2p) · (Vc × V2p))3/2
(Vc × V2p)

DE2p =Dp2 +Dg2(
r2

g2
2

+ 1)V2c + (g2 −
r2

g2

)DV2c −
r3Dg2

g2
2

√
1− r2

g22

V2p − r
√

1− r2

g2
2

DV2p

Dm =− (px − E1p) · (DE2p × Vc)
|(E1p − E2p)× Vc|

+

((E1p − E2p)× Vc) · (DE2p × Vc)
(((E1p − E2p)× Vc) · ((E1p − E2p)× Vc))3/2

(px − E1p) · ((E1p − E2p)× Vc).

Using these quantities, the derivative of the wrapping point angle w.r.t. the joint rotation

φ is given by

Dβ =
−2Dm

r
√

1−
(
m
r

)2
.

Finally, using two intermediate quantities defined by the following

Dh = Dp2 · Vc

D`2 =
g2Dg2√
g2

2 − r2
.

The derivative of the length of the tendon with respect to φ can be computed with

DLt =
hDh+ (`1 + `2 + rβ)(D`2 + rDβ)√

h2 + (`1 + `2 + rβ)2
.
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Although there is a discrete check and switch between equations as the tendon goes

between contact and no contact with the cylinder, the first derivative is continuous, there-

fore satisfying a satisfying a no-work condition on the cylinder. This should be the case

since the cylinder is assumed to be passive and frictionless.
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APPENDIX B

Computing the Descent Directions, ζ

This chapter presents the detailed derivations of the descent directions used in Chapters

4 and 5. Section B.1 presents the continuous version of the derivation while Section

B.2 covers the derivation using discrete mechanics. Both formulations are used in the

respective optimization algorithms to iteratively compute local directions of descent to

optimize the trajectories.

B.1. Continuous-time Descent Direction

To find a descent direction for the continuous optimal control algorithm, (5.3) or (4.6)

must be solved. As shown in the cost functions, the descent direction depends on the

linearizationDJ(P (ξk(t))), and the local quadratic model, 〈ζk(t), ζk(t)〉. Using a quadratic

model and expanding the linearizations of the cost function, (5.3) is rewritten as

(B.1) arg min
ζk(t)

=

tf∫
t0

a(t)T z̄(t) + b(t)Tv(t) +
1

2
z̄(t)TQnz̄(t) +

1

2
v(t)TRnv(t) dt,

such that

˙̄z = Az̄ +Bv,
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where a(t) and b(t) are the linearizations of the cost function with respect to x̄ and u, and

Qn and Rn are weighting matrices for the local quadratic model approximation. Design of

these weighting matrices can lead to faster convergence of the optimal control algorithm

depending on the specific problem. The derivations of the cost function linearizations and

the dynamics linearizations are now presented.

B.1.1. Cost Function Linearization - Information Maximization

The linearization of the cost function DJ(P (ξk(t))) is found by taking the directional

derivative of (4.3) with respect to the extended states x̄(t) and the control vector u(t).

The derivative of (4.3) with respect to x̄ yields

(B.2)
∂J

∂x̄
= − Qp

λ2
min

∂λmin
∂x̄

+

tf∫
t0

[
(x(t)− xd(t))T ·Qτ

]
dt.

Since the cost function involves eigenvalues of Ĩ(θ), this linearization requires the

calculation of the derivatives of eigenvalues. A process for this calculation was formalized

by Nelson [101]. Given an eigensystem of the form

AX = XΛ,

where Λ is a diagonal matrix of distinct eigenvalues (λ1, λ2, ...λn), and X is the associated

matrix of eigenvectors, the derivative of an eigenvalue λm is given by

Dxλm = ωTm ·DxA · νm,

where ωm is the left eigenvector and νm is the right eigenvector associated with λm.
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If the eigenvalues are not distinct, i.e., multiplicity greater than 1, Nelson’s method

does not hold since the choice of eigenvectors is not unique. However, in the case of

repeated eigenvalues and repeated eigenvalue derivatives, a set of eigenvectors can be

determined up to a scalar multiplier as detailed in [102]. Once the eigenvectors are

calculated, each eigenvalue and eigenvector pair can be used to compute the direction of

steepest descent for the objective.

Using these methods to compute the eigenvalue derivative, ∂λmin
∂x̄

from (B.2) can be

calculated. Taking the derivative of the eigenvalue of Ĩ(θ) from (4.2) with respect to the

extended state yields

∂λs
∂x̄

= ωTs
∂

∂x̄

(∫ tf

t0

Γθ(t)
T · Σ−1 · Γθ(t) dt

)
νs,

where s denotes the index of the minimum eigenvalue and eigenvector. Since the partial

derivative and eigenvectors are evaluated only at the final time, the equation can be

rewritten to a running cost formulation given by

(B.3)
∂λs
∂x̄

=

∫ tf

t0

ωTs
∂

∂x̄

(
Γθ(t)

T · Σ−1 · Γθ(t)
)
νs dt.

Finally, differentiating the inner product of the gradients yields

(B.4)
∂

∂x̄

(
Γθ(t)

T · Σ−1 · Γθ(t)
)

=

 2 Γθ(t)
T · Σ−1 · (D2

xg(·) · ψ(·) +DxDθg(·))

2 Γθ(t)
T · Σ−1 ·Dxg(·) · E

 ,
where E is a tensor of the form

Eijkl = δikδjl
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with δ as the Kronecker delta function.

Combining equations (B.2), (B.3), and (B.4), a(t) in (B.1) is given by,

a(t) =

 (x(t)− xd(t))TQτ

{0}1×n×p

− Qp

λ2
min

ωTs

 2 Γθ(t)
TΣ−1 (D2

xg(·)ψ(t) +DxDθg(·))

2 Γθ(t)
TΣ−1Dxg(·)E

 νs.
The linearization b(t) from (B.1), defining the derivative of the cost function with

respect to the controls u(t), is given by

b(t) = u(t)T ·Rτ ,

where Rτ is the weighting matrix from (4.3).

B.1.1.1. Cost Function Linearization - Conditioning Optimization. The first

term of (B.1) is computed as the linearization of the cost function with respect to the

extended states, x̄(t) and the controls, u(t). To begin, we apply the quotient rule to the

cost function given in (4.6). Taking the first derivative results in the following equation

for a(t),

(B.5) a(t) =
∂J

∂x̄
= Qp

(
1

λmin

∂λmax
∂x

− λmax
λ2
min

∂λmin
∂x

)
+

tf∫
t0

[
(x(t)− xd(t))T ·Qτ

]
dt.

where λ are the eigenvalues of the approximation of the Hessian, d2

dθ2
β(θ).

It is clear from this result that the derivative of the eigenvalues, ∂λmax
∂x

is needed.

Fortunately, eigenvalue perturbation theory permits such differentiation, and the resulting

form is relatively compact. From [101], the derivative of one eigenvalue of some matrix
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A is given by

(B.6) Diλk = yTk ·DiA · xk,

where λk is the kth eigenvalue of A, xk is the associated left eigenvector, yk is the associated

right eigenvector of A, and DiA and Diλk are the partial derivatives of A and λk with

respect to some argument i.

Given (B.6), the derivative of λi, for i ∈ {min,max}, with respect to x̄ is written as

(B.7)
∂λi
∂x

=

tf∫
t0

wTs
∂

∂x

[
Γθ(t)

T ·Qp · Γθ(t)T
]
ws dt,

where ws is the eigenvector associated with λi.

Lastly, differentiating the terms of the Hessian yields,

(B.8)
∂

∂x̄

(
Γθ(t)

T ·Qp · Γθ(t)
)

=

 2 Γθ(t)
T ·Qp · (D2

xg(·) · ψ(·) +DxDθg(·))

2 Γθ(t)
T ·Qp ·Dxg(·) · E

 ,
where E is a tensor of the form

Ei,j,k,l = δi,kδj,l

with δ·,· as the Kronecker delta function.

Combining equations (B.5), (B.7), (B.8), results in the complete linearization a(t) in

(B.1). The linearization with respect to the controls u(t) is simply given by

b(t) = u(t)T ·Rτ .
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B.1.2. Dynamics Linearization

For both the information and conditioning optimizations, the two other quantities needed

to compute the descent direction are A(t) and B(t) – the linearizations of the dynamics.

These linearizations take the same form for both methods. The descent direction ζk will

satisfy the linear constraint ODE given by

˙̄zk(t) = A(t)z̄k(t) +B(t)vk(t),

where A(t) is the linearization of the nonlinear dynamics given by (2.2) and (2.7) with

respect to x̄(t), and B(t) is the linearization with respect to u(t). The linearization A(t)

of the dynamics with respect to the extended state x̄(t) is given by

A(t) =

 ∂ẋ
∂x

∂ẋ
∂ψ

∂ψ̇
∂x

∂ψ̇
∂ψ

 =

 Dxf(·) {0}n×n×p

D2
xf(·) · ψ(t) +DxDθf(·) Dxf(·) · E

 .
In addition to the state linearizations, the control linearizations are required. This

linearization matrix B(t) is given by

B(t) =

 ∂ẋ
∂u

∂ψ̇
∂u

 =

 Duf(·)

DuDxf(·) · ψ(t) +DuDθf(·)

 .
Given the linearizations a(t), b(t), A(t), and B(t), (B.1) can be used to compute the

descent direction ζk(t). At each iteration of the optimization algorithm, the perturbed

trajectory ηk(t)+γkζk must be projected to satisfy the dynamics. As shown in Algorithm

2.2, the process is repeated until a termination criteria is satisfied.
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B.2. Descent Direction for Discrete Mechanical Systems

To find a descent direction for the discrete optimal control algorithm, (5.3) must be

solved. As shown in (5.3), the descent direction depends on the linearization of the cost

function, DJ(P (ξk)), and the local quadratic model, 〈ζk, ζk〉. Using a quadratic model

and expanding the linearizations of the cost function, (5.3) is rewritten as

arg min
ζk

=

kf∑
k=k0

2aTk z̄k + 2bTk v̄k + z̄TkQnz̄k + v̄TkRnv̄k dt,

such that

z̄k+1 = Āz̄k +Bv̄k,

where ak and bk are the linearizations of the cost function with respect to x̄ and ū, and

Qn and Rn are weighting matrices for the local quadratic model approximation. Design of

these weighting matrices can lead to faster convergence of the optimal control algorithm

depending on the specific problem. Since the derivations of the cost function linearizations

follows the same steps as the continuous-time formulation, we refer reader to [13] for the

derivations. We present the equations here in discrete-time for reference.

ak =

 (xk − x̂k)TQτ

{0}1×n×p

− Qp

λ2
min

ωTs

 2 ΓTkΣ−1
k

(
∂2g
∂x2k

ψk + ∂2g
∂θ∂xk

)
2 ΓTkΣ−1

k
∂g
∂xk

E

 νs
bk =(ūk − ˆ̄uk)

T ·Rτ
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Āk =

 ∂xk+1

∂xk

∂xk+1

∂ψk

∂ψk+1

∂xk

∂ψk+1

∂ψk

 =

 Ak {0}n×n×p

∂2xk+1

∂x2k
· ψk + ∂2xk+1

∂θ∂xk
Ak · E

(B.9)

B̄k =

 ∂xk+1

∂ūk

∂ψk+1

∂ūk

 =

 Bk

∂2xk+1

∂xk∂ūk
· ψk + ∂2xk+1

∂θ∂ūk

(B.10)

where ωs and νs are the left and right eigenvectors of I(θ) respectively. Definitions of ∂
2xk+1

∂θ∂xk

and ∂2xk+1

∂θ∂ūk
are presented in the following section. E is a tensor of the form Eijkl = δikδjl

where δ as the Kronecker delta function.

After computing the linearization of the cost function and dynamics at each time step

along the trajectory, (5.3) can be solved using the discrete-time algebraic Riccati equation.

The formulation of this LQ problem is detailed in the appendix of [33].

B.2.1. Descent direction derivatives

In order to compute the linearization of the extended state dynamics, ∂2xk+1

∂θ∂xk
and ∂2xk+1

∂θ∂ūk

are required to compute (B.9) and (B.10).

∂2xk+1

∂θ∂xk
is constructed from the following components:

∂2qk+1

∂θ∂qk
=−M−1[(D2D5D1Lk+1 +D2D6F

−
k+1)

∂qk+1

qk
+D1D5D1Lk+1 +D1D6F

−
k+1]

∂2qk+1

∂θ∂pk
=−M−1[(D2D5D1Lk+1 +D2D6F

−
k+1)

∂qk+1

pk
]
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∂2pk+1

∂θ∂qk
=(D2D2D2Lk+1

∂qk+1

∂qk
+D1D2D2Lk+1)

∂qk+1

∂θ
+D2D2Lk+1

∂2qk+1

∂θ∂qk

+D2D5D2Lk+1
∂qk+1

∂qk
+D1D5D2Lk+1

∂2pk+1

∂θ∂pk
=(D2D2D2Lk+1

∂qk+1

∂pk
)
∂qk+1

∂θ
+D2D2Lk+1

∂q2
k+1

∂θ∂pk
+D2D5D2Lk+1

∂qk+1

∂pk
,

and ∂2xk+1

∂θ∂ūk
is constructed from the following components

∂2qk+1

∂θ∂uk
=−M−1[(D2D5D1Lk+1 +D2D6F

−
k+1)

∂qk+1

∂uk
+D5D6F

−
k+1]

∂2qk+1

∂θ∂ρk+1

=−M−1[(D2D5D1Lk+1 +D2D6F
−
k+1)

∂qk+1

∂ρk+1

+D4D5D1Lk+1 +D4D6F
−
k+1]

∂2pk+1

∂θ∂uk
=(D2D2D2Lk1

∂qk+1

∂uk
)
∂qk+1

∂θ
+D2D2Lk+1

∂q2
k+1

∂θ∂uk
+D2D5D2Lk+1

∂qk+1

∂uk

∂2pk+1

∂θ∂ρk+1

=(D2D2D2Lk1
∂qk+1

∂ρk+1

)
∂qk+1

∂θ
+D2D2Lk+1

∂q2
k+1

∂θ∂ρk+1

+D4D5D2Lk+1

+D2D5D2Lk+1
∂qk+1

∂ρk+1

.

The equations representing the remaining components of Ak, Bk and M are derived and

presented in full in [31].
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