ANDREW D. WILSON

awilson@u.northwestern.edu adwilson10.github.io

PERSONAL PROFILE

As a Ph.D. graduate of the Neuroscience and Robotics Lab at Northwestern University, I have 7+ years of experience in the robotics field, specializing in the research and implementation of trajectory optimization and parametric learning algorithms for dynamical and multi-body systems. I am seeking a position which leverages my technical and management skills to develop innovative solutions for the robotics and automation industries.

EDUCATION

Northwestern University, Evanston, IL	December 2015	
Ph.D. in Mechanical Engineering		
Dissertation Title: Information-based Trajectory Optimization for Active Estimation in Mechanical Systems		
Kellogg School of Management, Northwestern University, Evanston, IL Certificate in Management for Scientists and Engineers	August 2014	
The Pennsylvania State University, University Park, PA	May 2010	
B.S. in Mechanical Engineering		

Honors in Aerospace Engineering Thesis Title: "A Control Allocation Method for a Helicopter with On-Blade Control" Minors in Engineering Entrepreneurship and Mathematics

PROFESSIONAL EXPERIENCE

Neuroscience and Robotics Lab (NxR) - Murphey Group September 2010 - December 2015 Graduate Student Evanston, IL

- · Developed new parametric learning algorithms using iterative optimization for dynamic systems
- \cdot Carried out experiments validating theoretical findings on the Baxter Research Robot platform and a kinematic car platform written in custom Python and C++ code
- · Experienced in developing algorithms and maintaining packages using ROS (Robot Operating System)
- \cdot Implemented several algorithms using projection-based optimal control, variational integration, and LQR control
- \cdot Current maintainer of trep a Python C-extension module for rigid body simulation developed in the Murphey group
- \cdot Redesigned embedded systems for research platforms including quadrotors and a brachiating robot including component selection and PCB design with custom written PIC32 firmware.

NASA Ames Research Center

Research Intern

June 2009 - August 2009 Moffett Field, CA

- · Analyzed parametric effects on a model of a helicopter utilizing trailing-edge flaps for primary control
- \cdot Studied the modes of vibration of the helicopter blades and stability of the helicopter system

Technische Universität München	May 2008 - August 2008	
Research Intern	Munich, Germany	
\cdot Implemented a server-client interface between a KUKA robot controller and a QNX real-time operating system using Simulink and xPC target		
\cdot Collaborated with German doctoral students on industrial robot telepresence research		
NASA Robotics Academy - Goddard Space Flight Center	June 2007 - August 2007	
Research Intern	Greenbelt, MD	

- \cdot Researched and developed simulations for innovative methods for robotic locomotion
- $\cdot\,$ Analyzed mechanical and electrical characteristics of a new stepper motor design

PUBLICATIONS

Journal Articles

- J4. A. D. Wilson, J. A. Schultz, A. R. Ansari, and T. D. Murphey, "Dynamic Task Execution using Active Parameter Identification with the Baxter Research Robot," *IEEE Transactions on Automation Science and Engineering*, Under review.
- J3. E. Tzorakoleftherakis, A. R. Ansari, A. D. Wilson, J. A. Schultz, and T. D. Murphey, "Model-Based Reactive Control for Hybrid and High-Dimensional Robotic Systems," *IEEE Robotics and Automation Letters*, vol. 1, pp. 431-438, Jan. 2016.
- J2. A. D. Wilson, J. A. Schultz, and T. D. Murphey, "Trajectory Optimization for Well-Conditioned Parameter Estimation," *IEEE Transactions on Automation Science and Engineering*, vol. 12, pp. 28-36, Jan. 2015.
- J1. A. D. Wilson, J. A. Schultz, and T. D. Murphey, "Trajectory Synthesis for Fisher Information Maximization," *IEEE Transactions on Robotics*, vol. 30, pp. 1358-1370, Dec. 2014.

Refereed Conference Papers

- C4. A. D. Wilson, J. A. Schultz, A. R. Ansari, and T. D. Murphey, "Real-time Trajectory Synthesis for Information Maximization using Sequential Action Control and Least-Squares Estimation," *IEEE/RSJ International Conference on Intelligent Robots and Systems*, pp. 4935-4940, Oct. 2015.
- C3. A. D. Wilson and T. D. Murphey, "Maximizing Fisher Information Using Discrete Mechanics and Projection-Based Trajectory Optimization," *IEEE International Conference on Robotics and Automation*, pp. 2403-2409, May 2015.
- C2. A. D. Wilson and T. D. Murphey, "Local E-optimality Conditions for Trajectory Design to Estimate Parameters in Nonlinear Systems," *American Control Conference*, pp. 443-450, June 2014.
- C1. A. D. Wilson and T. D. Murphey, "Optimal Trajectory Design for Well-Conditioned Parameter Estimation," in 2013 IEEE International Conference on Automation Science and Engineering, pp. 13-19, Aug. 2013. Best Conference Paper Award Finalist.

Patents Issued

- P3. Walk and Roll Robot. U.S. Patent 8030873, Issued Oct. 4, 2011.
- P2. Directed Flux Motor. U.S. Patent 7919891, Issued Apr. 5, 2011.
- P1. Joint Assembly. U.S. Patent 7735385, Issued Jun. 15, 2010.

HONORS

- $\cdot\,$ Best Conference Paper Finalist, 2013 IEEE Conference on Automation Science and Engineering
- $\cdot\,$ NDSEG Fellowship Recipient, 2010-2013
- $\cdot\,$ NASA Aeronautics Scholarship Recipient, 2008-2010
- $\cdot\,$ 2007 NASA Robotics Academy Audience Award for Best Presentation to a Non-Technical Audience
- $\cdot\,$ Harding Louis Memorial Scholarship Recipient, 2008-2009
- $\cdot\,$ Penn State President's Freshman Award, 2007
- $\cdot\,$ PPG Industries Merit Scholarship, 2006
- $\cdot\,$ Eagle Scout, Boy Scouts of America, 2006

TEACHING EXPERIENCE

Everything is the Same: Modeling Engineered Systems *Teaching Assistant*

Fall 2013

• Created and filmed lab demonstration and monitored online forums for the Northwestern Massive Open On-line Course (MOOC).

PROFESSIONAL AFFILIATIONS

- · IEEE Robotics & Automation Society, Member
- $\cdot\,$ ASME, Member