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Abstract— This paper describes the implementation of a
neural network algorithm using training data derived from an
experimental mobile robot dataset. The data is drawn from
experiments run at the Autonomous Space Robotics Lab at the
University of Toronto. The robot’s control inputs and position
were captured during each test. We examine the performance
of a neural network to learn a motion model for the robot
and compare it to a simplified model of the robot’s motion.
The results show that the neural network successfully learns
an improved model of the robot’s motion using a two-layer
network with four hidden units.

I. INTRODUCTION

In the realm of simulation of mobile robots, many assump-
tions can be made when creating a mathematical model of
the robot’s motion. The fidelity of the model can have a
significant impact on the performance of the overall sim-
ulation and level of approximation to the physical system.
Using measurement data collected by the robot can improve
the performance of the simulation using filtering algorithms,
such as the Extended Kalman Filter; however, filtering ap-
proaches cannot improve the core model that is used in the
simulation. Machine learning algorithms provide a means of
using experimental training data to learn a more accurate
model of the robot which can be highly nonlinear.

This report will examine the performance of one type
of machine learning algorithm - Neural Networks. A set
of training data will be constructed from the UTIAS
dataset. The dataset used in this implementation is the
MRSLAM Dataset4 for Robot 3. Given this training data,
a model of the robot will be learned and compared to
a simplified model of the robot’s motion. The effect of
parameters in the neural network algorithm will also be
examined.

II. LEARNING GOAL

The first task is building the training data that will be
used to learn a better motion model for the robot. The
fleet of robots used in the experiential data collection were
five iRobot Create platforms [1]. They are two-wheeled,
differential drive robot platforms equipped with a monocular
camera for landmark range and orientation sensing.

Figure 1 shows the coordinate system for the dataset. The
angle, θ = 0 aligns the world frame with the robot’s body
frame. The robot’s configuration states are given by (x, y, θ).

A. Simplified Motion Model

The robots used in the dataset have two control inputs. The
robot records the forward velocity commands, v, (along the
x-axis) and the angular velocity commands, ω (about the z-
axis). We will compare our learning algorithm’s performance

Fig. 1. Robot body frame and world frame coordinate systems [1].

to a simplified kinematic model of the robot. This model
assumes that the robot’s body velocity is linear in the
direction of heading. In the robot’s body frame, this results
in the following equations of motion:

ẋR = v

ẏR = 0

θ̇ = ω

For the purposes of learning the robot model, we will
assume that the model is independent of the robot’s world
position and orientation. This will allow for a lower dimen-
sional mapping from the robot’s control inputs to changes in
the states in the robot’s body frame. At each timestep, we
will convert these changes in body states back to the world
frame using a simple transformation:(

∆xI
∆yI

)
= RIR

(
∆xR
∆yR

)
where

RIR =

(
cos θ − sin θ
sin θ cos θ

)
B. Training Dataset

With the robot’s coordinates and nominal model defined,
we can create a training dataset for the learning algorithm.
The input training set, X , for the algorithm will consist of
the two control inputs, averaged over a predefined timestep,
dt. For this implementation, we will use a timestep of dt = 2
seconds. This will help to smooth the data and filter some
of the high frequency noise from the control inputs.

The output training set, Y , will be the change of states
in the body frame of the robot during the defined timestep.
The data for this set comes from the groundtruth data from



Fig. 2. Training data (blue points) and learned function values (red points).

the experimental dataset which was obtained with a external
Vicon camera system tracking the robot’s position in the
world. In order to match timestamps for both the control and
ground truth data, a first order interpolation of the data was
done and training data was extracted from the interpolation.

This choice of training data should provide a much better
capability to learn the robot’s kinematic model from timestep
to timestep. In the simplified model, the robot’s motion
is only along the xR-axis. Now, the algorithm can learn
a nonlinear function for the xR translation, as well as a
yR translation which is not possible in the linear model.
Additionally, a nonlinear function for the θ rotation can be
created, replacing the linear model that was assumed.

For the neural network implementation, we also need to
scale the output data to the range (0, 1). This is due to the
use of the sigmoid function in the output layers which will
be discussed further in the next section. Scaling the input to
(0, 1) also helped the overall performance of the algorithm,
although not required. The scaling parameters were set by
hand for training data used. Figure 2 shows the scaled values
of the training dataset represented by the blue points.

III. ARTIFICIAL NEURAL NETWORKS

With a set of training data, we can attempt to learn the
best function that approximates the relationship between the
input and output. A popular approach to learning involves
Artificial Neural Networks. The networks are inspired by
biological neurons which are simple units interconnected to
form a complex network.

A. Sigmoid Units

The basic unit that will be used in this implementation of
a neural network is the sigmoid unit. The sigmoid unit com-
putes a linear combination of the inputs from the previous
layer and applies a differentiable threshold to the result. This
threshold function is given by the sigmoid function:

σ(y) =
1

1 + e−y

where y is a linear combination of the inputs, ~w · ~x, with
weights, ~w.

For classification problems, a different unit called the
perceptron is sometimes used. This unit outputs either a 1 or
-1 based on a linear combination of the inputs. The advantage
of the sigmoid function is that it allows for continuous
output which is better suited for regression problems. The
sigmoid output is also differentiable which allows for hidden
layers using the backpropagation algorithm, which will be
discussed next.

B. Backpropagation Algorithm

For a multilayer network, the backpropagation algorithm is
used to learn the weights for each layer. This is accomplished
by attempting to minimize the squared error between the
network’s output and training output [2].

The backpropagation algorithm incorporates a gradient
descent weight update by computing the error in the network
output compared to the training output, and then propagating
the error backwards through the network to update the
weights at each unit.

Each iteration of the algorithm performs the following
operations:

1) The training input, ~x is input into the network. Outputs
are computed at every layer of the network, resulting
in a final output from the output layer.

2) An error for every output unit, k, is computed between
the network output, yk, and the training data output,
tk using the following formula

δk = (yk)(1 − yk)(tk − yk)

3) For each hidden unit, h, at the previous layer, an error
term for each hidden unit is computed between the
hidden output, yh and the following layer error, δk
using the following formula

δh = yh(1 − yh)
∑
k

wkhδk



where the notation wij represents the weight from unit
i to unit j in the following layer.

4) For multiple hidden layers, the error calculation in step
3 is repeated for each layer until the input layer. For
a two-layer neural network, step 3 is just performed
once.

5) Each network weight is updated by the following
equation

wn
ji = wn−1

ji + ηδjxji

where xji represents the input from unit i to unit j in
the following layer, and η is the learning rate.

This procedure is carried out iteratively until a given termi-
nation condition is met, which could include a certain thresh-
old on the error, sufficient decrease condition, or simply
a maximum number of iterations. For this implementation,
we constrained the neural network to a maximum of 2000
iterations.

IV. RESULTS

The primary purpose of this paper is to highlight the
results and parameter choices of the neural network imple-
mentation. In this respect, we will examine the ability of the
network to learn the training data and then test the network
on additional data within the dataset. This method of cross-
validation will allow us to ensure the network is learning an
improved model while avoiding over-fitting of the data.

When referencing the data in this implementation, the
point, t = 0 in the processed data corresponds to the
timestamp 1288971880.0 in the raw dataset. The odometry
and groundtruth data hs been interpolated to the first order,
and the odometry has been sampled at a fixed timestep of
0.05s and averaged over a fixed timestep, dt = 2s.

For the results and tests that follow, the training dataset
included 600 seconds of data beginning at t = 100s. The
testing set included 600 seconds of data beginning at t =
1500s. Figure 2 shows the learned model represented by the
red points given the training inputs.

A. Learned Model vs. Simplified Model

The performance of the tuned neural network can be seen
when compared with the simplified model. Figure 3 shows
the dead-reckoning paths using the learned mode and the
simplified model compared with the groundtruth measure-
ments. Qualitatively, the learned model is significantly more
accurate than the simplified model that was used.

The network used for this learning model was a two-
layer network with four hidden units. The impact of the
network structure on the performance will be discussed in
the following section. The parameters used in this test were
the learning rate, η = 0.4, and momentum, α = 0. These
parameters will also be discussed in following sections.
To test the general performance of the learned model, the
network was run on a testing dataset as well. The dead-
reckoning path of the testing data can be seen in Figure 4.
This also qualitatively shows much better performance of the
learned model over the simplified robot motion model.

Fig. 3. Dead-reckoning paths over training set points from t = 100 to
300s with simplified model (blue), learned model (red), and groundtruth
(yellow).

Fig. 4. Dead-reckoning paths over testing set points from t = 1800 to
1950s with simplified model (blue), learned model (red), and groundtruth
(yellow).

As a quantitative comparison, the Euclidean norm of the
error between the output of the network and the groundtruth
position, as well as the error between the simplified model
and groundtruth position was calculated at each timestep
and the norm was taken over the entire training and testing
trajectories. The results of this analysis can be seen in Table
1.

The table shows a significant decrease in the error of each
state using the learning model in either the training or testing
set as compared to the simplified model. The x state shows an
order of magnitude improvement in the error norm over the
600s trajectory. The θ state shows about 3x improvement in
the error, most likely due to a high level of sensitivity in that
state. The fact that the testing data error is on the same order
as the training error suggests a high level of generalization
of the model which is important, since the model can begin
to overfit the data if learned improperly.

B. Hidden Units

One important design decision in the neural network
structure is the number of hidden layers and number of
hidden units per layer. Although multiple layers of units
can fit more complex data, the complexity comes at the



TABLE I
NORM OF THE ERROR OF EACH TIMESTEP OVER THE ENTIRE

TRAJECTORY WITH 4 HIDDEN UNITS.

∆xI ∆yI ∆θ
Simplified (Training) 6.16019 3.56681 4.76227
Learned (Training) 0.458173 0.601775 1.36266
Learned (Testing) 0.471169 0.531967 1.38338

cost of computation time and potential for overfitting the
training data. We began with one hidden layer of units,
and this configuration turned out to yield good performance.
Therefore, multiple hidden layers of units were not used in
order to keep the computation time as low as possible.

The decision that was made in this implementation was
the best number of hidden units in the single layer. Table
2 shows the error norm associated with several different
choices of hidden units and the computation time associated
with learning the weights.. Two units provides the fastest
learning time over 2000 iterations; however, the quality of the
learned model is significantly lower than with four units. The
increase to six units provides marginal improvement in the
error norms; however, the computation time also increases by
about 30 seconds. For this implementation, the best number
of hidden units was determined to be four based on the error
norm analysis.

C. Learning Parameters

Two design parameters can be chosen for the implemen-
tation of the artificial neural network - the learning rate, η
and the momentum, α. The learning rate is a proportional
term which multiplies the weight update, ∆wij in step 5
of the backpropagation algorithm. Increasing the learning
parameter to 1 resulted in a faster convergence of the
algorithm, and decreasing the parameter to 0.1 resulted in
slower convergence.

In both cases, the network converged to approximately the
same values as in Table 1, which suggests that the algorithm
is reaching an area with many local minima close together.
Since the parameter didn’t have a large effect on reaching
the minima, we set it to a middle value of 0.4 to ensure
that the algorithm learns quickly while attempting to avoid
overtraining the weights early in the training data.

The second parameter is the momentum, α. This is an
optional term which creates a dependence of the weight
update on the previous weight. Using a non-zero α results
in the following weight update which is used in step 5 of
the backpropagation algorithm.

wn
ji = wn−1

ji + ∆wn
ji + α∆wn−1

ji

where ∆wji = ηδjxji.
The momentum parameter can help the algorithm avoid

local minima and converge quicker by continuing to step
in a descent direction that is proportional to the previous
iteration. This can provide ”momentum” in gradient descent,
pushing the algorithm through any local minima. In the case
of this implementation, setting α between 0 and 1 resulted
in a very similar trained model, again suggesting that the

TABLE II
NORM OF THE ERROR OVER TRAINING DATA AND COMPUTATION TIME

FOR VARYING NUMBERS OF HIDDEN UNITS.

∆xI ∆yI ∆θ Time (s)
Two units 0.814169 0.682159 5.89655 94.3
Four units 0.458173 0.601775 1.36266 124.0
Six units 0.452290 0.601658 1.29548 153.7

set of minima are fairly wide and close together. Since the
parameter did not have an appreciable effect, it was set to 0
for the tests.

V. CONCLUSION

Overall, the neural network has been shown to successfully
learn an improved model for the robot’s motion. The result-
ing dead-reckoning path has less error than the simplified
model which could be used to improve other algorithms such
as Kalman filtering algorithms to incorporate measurements
into the system.

For this implementation, the design choice that has the
most significant impact is the number of hidden units used
in the hidden layer. A balance is found that provides enough
learning capability while limiting the complexity and com-
putation time of the algorithm. Other parameters, such as
the learning rate and momentum had a small effect on the
converged weights of the model; however, given a different
system, these parameters can have significant effects on the
overall performance of the algorithm.

To ensure that the model was not overfitting the data,
the testing dataset was used to validate the performance.
Since the error in the testing data was quite close to that
of the training data, the learned model appears to have very
good generalization properties to data from other parts of
the dataset. More rigorous cross validation could be carried
out to ensure that all parts of the dataset are covered by the
learned model.

Although neural networks can be slow to train, this im-
plementation required only 124 seconds to train 600 seconds
of data. After processing the training data, queries on the
model are significantly faster than realtime, ensuring that the
learned model could be implemented with an experimental
setup along with other filtering algorithms, such as the
Extended Kalman Filter.
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Artificial Neural Network - Dataset #1

ü Data Import & Processing

odomdata = Drop@Import@"Robot3_Odometry.dat"D, 81, 5<D;

knownpose = Drop@Import@"Robot3_Groundtruth.dat"D, 81, 4<D;

odomdata1 = odomdata − Join@8ConstantArray@odomdata@@1, 1DD, Length@odomdataDD<�,

ConstantArray@0, 8Length@odomdataD, 2<D, 2D;

knownpose1 = knownpose − Join@8ConstantArray@odomdata@@1, 1DD, Length@knownposeDD<�,

ConstantArray@0, 8Length@knownposeD, 3<D, 2D;

odominterp = 8Interpolation@Thread@8odomdata1@@All, 1DD, odomdata1@@All, 2DD<D,

InterpolationOrder → 1D@sD, Interpolation@

Thread@8odomdata1@@All, 1DD, odomdata1@@All, 3DD<D, InterpolationOrder → 1D@sD<;

knowninterp = 8Interpolation@Thread@8knownpose1@@All, 1DD, knownpose1@@All, 2DD<D,

InterpolationOrder → 1D@sD, Interpolation@

Thread@8knownpose1@@All, 1DD, knownpose1@@All, 3DD<D, InterpolationOrder → 1D@sD,

Interpolation@Thread@8knownpose1@@All, 1DD, knownpose1@@All, 4DD<D,

InterpolationOrder → 1D@sD<;

groundtruth@t_D := knowninterp ê. s → t

modeldata@t_D := odominterp ê. s → t
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ü Build Training & Testing Datasets

H∗ Training data timestep and averaging timestep ∗L

dt = 2; del = 0.05;

H∗ Training dataset timestamps ∗L

t0 = 100; tf = 700;

H∗ Testing dataset timestamps ∗L

t0test = 1500; tftest = 2100;

Rbw@x_, θ_D := x.88Cos@θD, −Sin@θD<, 8Sin@θD, Cos@θD<<;

Rwb@x_, θ_D := 88Cos@θD, −Sin@θD<, 8Sin@θD, Cos@θD<<.x;

H∗ Scaling input and output to H0,1L ∗L

xscaling = 8820, −5.65<, 81 ê 4, 0.5<<;

yscaling = 888, −1.5<, 83, 0.5<, 81 ê 4, 0.5<<;

H∗ Compute input & output training sets and input testing set ∗L

xtrain =

Table@8xscaling@@1, 1DD Sum@modeldata@jD@@1DD, 8j, t, t + dt, del<D ê Hdt ê del + 1L dt +

xscaling@@1, 2DD, xscaling@@2, 1DD Sum@modeldata@jD@@2DD, 8j, t, t + dt, del<D ê

Hdt ê del + 1L dt + xscaling@@2, 2DD<, 8t, t0, tf, dt<D;

ytrain = Table@8yscaling@@1, 1DD Rbw@groundtruth@t + dtD@@1 ;; 2DD − groundtruth@tD@@1 ;; 2DD,

groundtruth@tD@@3DDD@@1DD + yscaling@@1, 2DD,

yscaling@@2, 1DD Rbw@groundtruth@t + dtD@@1 ;; 2DD − groundtruth@tD@@1 ;; 2DD,

groundtruth@tD@@3DDD@@2DD + yscaling@@2, 2DD,

yscaling@@3, 1DD Which@−Pi ≤ groundtruth@t + dtD@@3DD − groundtruth@tD@@3DD ≤ Pi,

groundtruth@t + dtD@@3DD − groundtruth@tD@@3DD,

Hgroundtruth@t + dtD@@3DD − groundtruth@tD@@3DDL > Pi,

groundtruth@t + dtD@@3DD − groundtruth@tD@@3DD − 2 Pi,

Hgroundtruth@t + dtD@@3DD − groundtruth@tD@@3DDL  −Pi, groundtruth@t + dtD@@3DD −

groundtruth@tD@@3DD + 2 PiD + yscaling@@3, 2DD<, 8t, t0, tf, dt<D;

xtest = Table@8xscaling@@1, 1DD Sum@modeldata@jD@@1DD, 8j, t, t + dt, del<D ê Hdt ê del + 1L dt +

xscaling@@1, 2DD,

xscaling@@2, 1DD Sum@modeldata@jD@@2DD, 8j, t, t + dt, del<D ê Hdt ê del + 1L dt +

xscaling@@2, 2DD<, 8t, t0test, tftest, dt<D;

H∗ Output plots of training data ∗L

GraphicsGrid@Table@ListPlot@Thread@8xtrain@@All, aDD, ytrain@@All, bDD<D,

PlotRange → 880, 1<, 80, 1<<D, 8a, 1, 2<, 8b, 1, 3<DD
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ü Neural Network Backpropegation Algorithm

H∗ Neural Net Parameters ∗L

in = 2;

out = 3;

hid = 4;

η = 1;

α = 0;

sig@y_D := 1 ê H1 + Exp@− yDL;

H∗ Initialize random weights ∗L

w@1D = RandomReal@8−0.1, 0.1<, 8hid, in<D;

w@2D = RandomReal@8−0.1, 0.1<, 8out, hid<D;

∆w@1D = 0;

∆w@2D = 0;

H∗ Stochastic gradient descent formulation ∗L

For@n = 1, n  2000, n++,

order = RandomSample@Table@i, 8i, 1, Length@xtrainD<DD;

For@i = 1, i ≤ Length@xtrainD, i++,

x@1D = xtrain@@order@@iDDDD;

y = ytrain@@order@@iDDDD;

x@2D = Table@sig@x@1D.w@1D@@kDDD, 8k, 1, hid<D;

x@3D = Table@sig@x@2D.w@2D@@kDDD, 8k, 1, out<D;

δ@3D = Table@x@3D@@kDD H1 − x@3D@@kDDL Hy@@kDD − x@3D@@kDDL, 8k, 1, out<D;

δ@2D = Table@x@2D@@kDD H1 − x@2D@@kDDL Hw@2D@@All, kDD.δ@3DL, 8k, 1, hid<D;

∆w@2D = Table@η δ@3D@@jDD x@2D@@kDD, 8j, 1, out<, 8k, 1, hid<D + α ∆w@2D;

∆w@1D = Table@η δ@2D@@jDD x@1D@@kDD, 8j, 1, hid<, 8k, 1, in<D + α ∆w@1D;

w@2D += ∆w@2D;

w@1D += ∆w@1D;

err@iD = Table@Norm@y@@kDD − x@3D@@kDDD, 8k, 1, out<D;

D;

error@nD = Table@Norm@Table@err@iD@@mDD, 8i, 1, Length@xtrainD<DD, 8m, 1, out<D;

D;

H∗ Learned function using weights derived from the neural network ∗L

output@x_D := Table@sig@Table@sig@x.w@1D@@kDDD, 8k, 1, hid<D.w@2D@@kDDD, 8k, 1, out<D

H∗ Saved Weights from reported trial ∗L

w@1D = 880.21330859461453386, −2.182284932023064<,

8−8.927196359036031, −4.851646501308502<, 82.558008801503831, 0.0788159832243044<,

81.7923314621072692, 8.40078944455011<<;

w@2D = 882.2005261772113, −8.220568043155712, −9.363556131738397, 7.255621485516451<,

8−9.159651108985003, 0.8165804887279737, 2.0362235495862095, 1.1399772777398702<,

8−5.781968386706752, 0.5410942259399777, 1.238882067198802, 0.7732224084238557<<;
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ü Plots & Analysis

H∗ Convergence Plot in scaled coordinates ∗L

ListPlot@Table@Table@error@iD@@jDD, 8i, 1, n − 1<D, 8j, 1, 3<D, PlotRange → 80, 8<D
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GraphicsGrid@Table@Show@ListPlot@

Thread@8xtrain@@All, aDD, ytrain@@All, bDD<D, PlotRange → 880, 1<, 80, 1<<D, ListPlot@

Thread@8xtrain@@All, aDD, Table@output@xtrain@@iDDD@@bDD, 8i, 1, Length@xtrainD<D<D,

PlotStyle → RedDD, 8a, 1, 2<, 8b, 1, 3<DD
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H∗ Compute error between model, training,

testing data sets and the groundtruth from step to step ∗L

modelerror = Table@8

Sum@modeldata@jD@@1DD, 8j, t, t + dt, del<D ê Hdt ê del + 1L

Cos@groundtruth@t0 + Hi − 1L dtD@@3DDD dt,

Sum@modeldata@jD@@1DD, 8j, t, t + dt, del<D ê Hdt ê del + 1L

Sin@groundtruth@t0 + Hi − 1L dtD@@3DDD dt,

Sum@modeldata@jD@@2DD, 8j, t, t + dt, del<D ê Hdt ê del + 1L dt<, 8t, t0, tf, dt<D −

Table@8

groundtruth@t0 + i dtD@@1DD − groundtruth@t0 + Hi − 1L dtD@@1DD,

groundtruth@t0 + i dtD@@2DD − groundtruth@t0 + Hi − 1L dtD@@2DD,

Which@−Pi ≤ groundtruth@t0 + i dtD@@3DD − groundtruth@t0 + Hi − 1L dtD@@3DD ≤ Pi,

groundtruth@t0 + i dtD@@3DD − groundtruth@t0 + Hi − 1L dtD@@3DD,

Hgroundtruth@t0 + i dtD@@3DD − groundtruth@t0 + Hi − 1L dtD@@3DDL > Pi,

groundtruth@t0 + i dtD@@3DD − groundtruth@t0 + Hi − 1L dtD@@3DD − 2 Pi,

Hgroundtruth@t0 + i dtD@@3DD − groundtruth@t0 + Hi − 1L dtD@@3DDL  −Pi,

groundtruth@t0 + i dtD@@3DD − groundtruth@t0 + Hi − 1L dtD@@3DD +

2 PiD<, 8i, 1, Length@xtrainD<D;

trainerror = Table@Append@

Rwb@8Houtput@xtrain@@Ht − t0L ê dt + 1DDD@@1DD − yscaling@@1, 2DDL ê yscaling@@1, 1DD,

Houtput@xtrain@@Ht − t0L ê dt + 1DDD@@2DD − yscaling@@2, 2DDL ê yscaling@@2, 1DD<,

groundtruth@tD@@3DDD,

Houtput@xtrain@@Ht − t0L ê dt + 1DDD@@3DD − yscaling@@3, 2DDL ê yscaling@@3, 1DDD,

D
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8t, t0, tf, dt<D −

Table@8

groundtruth@t + dtD@@1DD − groundtruth@tD@@1DD,

groundtruth@t + dtD@@2DD − groundtruth@tD@@2DD,

Which@−Pi ≤ groundtruth@t + dtD@@3DD − groundtruth@tD@@3DD ≤ Pi,

groundtruth@t + dtD@@3DD − groundtruth@tD@@3DD,

Hgroundtruth@t + dtD@@3DD − groundtruth@tD@@3DDL > Pi,

groundtruth@t + dtD@@3DD − groundtruth@tD@@3DD − 2 Pi,

Hgroundtruth@t + dtD@@3DD − groundtruth@tD@@3DDL  −Pi,

groundtruth@t + dtD@@3DD − groundtruth@tD@@3DD + 2 PiD<, 8t, t0, tf, dt<D;

testerror = Table@Append@

Rwb@8Houtput@xtest@@Ht − t0testL ê dt + 1DDD@@1DD − yscaling@@1, 2DDL ê yscaling@@1, 1DD,

Houtput@xtest@@Ht − t0testL ê dt + 1DDD@@2DD − yscaling@@2, 2DDL ê yscaling@@2, 1DD<,

groundtruth@tD@@3DDD,

Houtput@xtest@@Ht − t0testL ê dt + 1DDD@@3DD − yscaling@@3, 2DDL ê yscaling@@3, 1DDD,

8t, t0test, tftest, dt<D −

Table@8

groundtruth@t + dtD@@1DD − groundtruth@tD@@1DD,

groundtruth@t + dtD@@2DD − groundtruth@tD@@2DD,

Which@−Pi ≤ groundtruth@t + dtD@@3DD − groundtruth@tD@@3DD ≤ Pi,

groundtruth@t + dtD@@3DD − groundtruth@tD@@3DD,

Hgroundtruth@t + dtD@@3DD − groundtruth@tD@@3DDL > Pi,

groundtruth@t + dtD@@3DD − groundtruth@tD@@3DD − 2 Pi,

Hgroundtruth@t + dtD@@3DD − groundtruth@tD@@3DDL  −Pi,

groundtruth@t + dtD@@3DD − groundtruth@tD@@3DD + 2 PiD<, 8t, t0test, tftest, dt<D;

H∗ Ouput plots of error norm at each training point ∗L

GraphicsGrid@

8Table@ListPlot@Table@Norm@modelerror@@j, iDDD, 8j, 1, Length@modelerrorD<DD, 8i, 1, 3<D,

Table@ListPlot@Table@Norm@trainerror@@j, iDDD, 8j, 1, Length@trainerrorD<DD, 8i, 1, 3<D<D
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H∗ Output norms of model, training, and testing error ∗L

GridBox@8Table@Norm@modelerror@@All, iDDD, 8i, 1, 3<D, Table@Norm@trainerror@@All, iDDD,

8i, 1, 3<D, Table@Norm@testerror@@All, iDDD, 8i, 1, 3<D<D êê DisplayForm

6.16019 3.56681 4.76227

0.45143 0.616673 1.62608

0.477586 0.53162 1.63782
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H∗ Plot of the dead−

reckoning simplified model and learned model vs. the groundtruth on training data ∗L

x@t0D = groundtruth@t0D;

x1@t0D = groundtruth@t0D;

For@t = t0, t  tf, t += dt,

x@t + dtD = 8Sum@modeldata@jD@@1DD, 8j, t, t + dt, del<D ê Hdt ê del + 1L Cos@x@tD@@3DDD dt,

Sum@modeldata@jD@@1DD, 8j, t, t + dt, del<D ê Hdt ê del + 1L Sin@x@tD@@3DDD dt,

Sum@modeldata@jD@@2DD, 8j, t, t + dt, del<D ê Hdt ê del + 1L dt< + x@tD;

x1@t + dtD = Append@Rwb@8Houtput@xtrain@@Ht − t0L ê dt + 1DDD@@1DD − yscaling@@1, 2DDL ê

yscaling@@1, 1DD, Houtput@xtrain@@Ht − t0L ê dt + 1DDD@@2DD − yscaling@@2, 2DDL ê

yscaling@@2, 1DD<, x1@tD@@3DDD,

Houtput@xtrain@@Ht − t0L ê dt + 1DDD@@3DD − yscaling@@3, 2DDL ê yscaling@@3, 1DDD + x1@tD;

D;

ListPlot@8Table@x@sD@@1 ;; 2DD, 8s, t0, 300, dt<D, Table@x1@sD@@1 ;; 2DD, 8s, t0, 300, dt<D,

Table@groundtruth@sD@@1 ;; 2DD, 8s, t0, 300, dt<D<, Joined → True, PlotMarkers → AutomaticD
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H∗ Plot of the dead−

reckoning simplified model and learned model vs. the groundtruth on testing data ∗L

t0test = 1800; tftest = 1950;

xtest = Table@

8xscaling@@1, 1DD Sum@modeldata@jD@@1DD, 8j, t, t + dt, del<D ê Hdt ê del + 1L dt + xscaling@@

1, 2DD, xscaling@@2, 1DD Sum@modeldata@jD@@2DD, 8j, t, t + dt, del<D ê Hdt ê del + 1L dt +

xscaling@@2, 2DD<, 8t, t0test, tftest, dt<D;

x@t0testD = groundtruth@t0testD;

x1@t0testD = groundtruth@t0testD;

For@t = t0test, t  tftest, t += dt,

x@t + dtD = 8Sum@modeldata@jD@@1DD, 8j, t, t + dt, del<D ê Hdt ê del + 1L Cos@x@tD@@3DDD dt,

Sum@modeldata@jD@@1DD, 8j, t, t + dt, del<D ê Hdt ê del + 1L Sin@x@tD@@3DDD dt,

Sum@modeldata@jD@@2DD, 8j, t, t + dt, del<D ê Hdt ê del + 1L dt< + x@tD;

x1@t + dtD = Append@Rwb@8Houtput@xtest@@Ht − t0testL ê dt + 1DDD@@1DD − yscaling@@1, 2DDL ê

yscaling@@1, 1DD, Houtput@xtest@@Ht − t0testL ê dt + 1DDD@@2DD − yscaling@@2, 2DDL ê

yscaling@@2, 1DD<, x1@tD@@3DDD,

Houtput@xtest@@Ht − t0testL ê dt + 1DDD@@3DD − yscaling@@3, 2DDL ê

yscaling@@3, 1DDD + x1@tD;

D;

ListPlot@8Table@x@sD@@1 ;; 2DD, 8s, t0test, tftest, dt<D,

Table@x1@sD@@1 ;; 2DD, 8s, t0test, tftest, dt<D,

Table@groundtruth@sD@@1 ;; 2DD, 8s, t0test, tftest, dt<D<,

Joined → True, PlotMarkers → AutomaticD
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