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Abstract— This paper describes the implementation of the
unscented Kalman filtering algorithm on a robot dataset. The
data is drawn from experiments run at the Autonomous Space
Robotics Lab at the University of Toronto. A fleet of five robots
were run on a course with 15 coded markers. The robots’
odometry data was captured as well as sensor readings using a
monocular camera. We examine one robot’s odometry and mea-
surement data to construct a path using the filtering algorithm.
The resulting path is then compared to a dead-reckoning path
based on the robot’s odometry and to the groundtruth path
as recorded by an overhead Vicon motion capture system. The
unscented Kalman filter successfully reconstructs the path of
the robot with relatively small error compared to the dead-
reckoning path.

I. INTRODUCTION

The unscented Kalman filter is an extension of the Kalman
filter and extended Kalman filtering algorithms. Although
the extended Kalman filter was created to handle non-linear
functions, for particularly non-linear problems, the extended
filter can have very poor performance. The unscented version
uses a method of discrete sampling, called an unscented
transform, to sample a small set of points in the distribution.
These points, known as sigma points, are then propagated
through the non-linear function. This technique tends to have
better performance than the extended filter for highly non-
linear functions since the mean and variance are captured
more accurately.

This report will cover the modeling of the robot and its
sensors, the implementation of the Kalman filter algorithm,
and analysis of the algorithm’s performance on the UTIAS
dataset. The dataset used in this implementation is the
MRSLAM Dataset4 for Robot3.

II. ROBOT MODEL

The fleet of robots used in the dataset collection were
five iRobot Create platforms [1]. These are two-wheeled,
differential drive robot platforms. Each robot has an on-board
monocular camera for landmark sensing.

The coordinate system used in the dataset can be seen in
Figure 1. The angle, θ = 0, aligns the world frame with the
robot’s body frame. The monocular camera is fixed, pointing
along the x-axis of the robot’s body frame.

A. Motion Model

To implement the filtering algorithm, we must create a
motion model for the robot. The robot records the forward
velocity commands, v, (along the x-axis) and the angular
velocity commands, ω, (about the z-axis). There are a variety
of model choices for the differential drive robot. One can use
a model which accounts for the turning radius of the robot;

Fig. 1. Robot body frame and world frame coordinate systems.

however, for this implementation, we will use a simplified
kinematic motion model for the robot.

At a given point in time, we will assume that the robot’s
body velocity is linear in the direction of heading. This
results in the following equations of motion:

ẋ = v cos θ

ẏ = v sin θ

θ̇ = ω

Although this choice of model is a larger approximation
than taking the arc of the turning radius into account, this
model does not lead to singular values that can arise when
using the more sophisticated model. With small time steps,
the error between models is minimal. The simplified model
is still nonlinear which can be accommodated with the
unscented Kalman filter.

B. Measurement Model

The second model that has to be created is the measure-
ment model. This will also be a nonlinear model which takes
the robot’s current location and the known location of the
landmark and returns an expected measurement from the
robot. This measurement will then be compared to the actual
measurement made by the robot in the filtering algorithm.
The robot records the range, r, and bearing, φ, and landmark
number using its monocular camera.

Given the position of the landmark, (x`, y`), that the robot
measures and the current state of the robot in the world,
(xr, yr, θr), we can determine the expected observation of
the robot. The equations for the measurement are given as



follows:

r =
√

(x` − xr)2 + (y` − yr)2

φ = arctan

(
y` − yr
x` − xr

)
− θr

This set of nonlinear equations will be used in the mea-
surement update step of the unscented Kalman filter.

III. UNSCENTED KALMAN FILTER

With the motion model and measurement model equations,
we can proceed to implement the unscented Kalman filter
algorithm. The algorithm uses a set of sigma points to capture
the evolution of the robot through the nonlinear model and
measurement updates. If the number of states is given by n,
the number of sigma points used is 2n+ 1. Each dimension
of the state requires two sigma points, equally spaced on
each side of the mean, to propagate through the nonlinear
model, with one additional sigma point at the mean.

For this system, we will assume that the both the model
and measurement noise are additive and Gaussian. This
allows us to just use the state vector in the unscented Kalman
filter. A more sophisticated version of the unscented Kalman
filter uses an augmented state vector to more accurately
represent the noise for robot localization tasks. Details of the
augmented approach as well as full details of the unscented
filter used in this implementation can be found in [2].

A. Prediction Step

The algorithm begins by defining a set of sigma points
such that:

χ[0] = µ

χ[i] = µ+
(√

(n+ λ)Σ)i

)
χ[i] = µ+

(√
(n− λ)Σ)i

)
where the number of states, n = 3 for this system. The result
is 7 sigma points. The parameter, λ, is a scaling parameter
which is a function of two parameters, α and β, which
determines how far the sigma points are from the mean. We
will examine choices of α and β in the results section.

The square root of the covariance and parameter matrix
is accomplished by using the Cholesky factorization. This
provides a triangular matrix, the columns of which can be
used as the matrix square root of each sigma point [3]. If
the argument of this square root becomes ill conditioned
or singular, the Cholesky factorization will fail, and the
algorithm will halt. More sophisticated numerical techniques
are available, but not implemented in this version of the
algorithm.

After computing the sigma points, the points are then
passed through the nonlinear motion model to obtain noise-
free predicted sigma values, χ∗

t . A set of weights are
calculated from the scaling parameters to compute a single
mean and covariance from the sigma values. In this step, a
covariance matrix, Rt is added to the predicted covariance,
adding the model noise into the filter. At this point, new

sigma values can be determined using the predicted mean
and covariance. These sigma points capture the overall
uncertainty as a result of the prediction step. If there is no
additional measurement available, these sigma points become
the filtered sigma points for the next timestep.

B. Measurement Update

When a measurement is available, the measurement update
proceeds in a similar fashion. The predicted sigma points
and the landmark data are passed through the nonlinear
measurement model to obtain a predicted observation sigma
points, Zt. The same weights are then used to compute a
single predicted observation, ẑt from the observation sigma
points. The measurement variance is then computed with
additive measurement covariance, Qt.

Following the computation of the measurement covari-
ance, the Kalman gain, Kt, is computed and the updated
estimate of the robot position, µ and variance, Σ, are
returned.

IV. RESULTS

The main purpose of the paper is to highlight the results
of the unscented Kalman filter implementation. To this end,
we will examine the differences between the dead-recking
path and the filtered path, and compare both to the known
path of the robot as recorded by the Vicon system. We will
also examine the effect of noise parameter choices as well as
the scaling parameter choices in the unscented Kalman filter
algorithm.

In the implementation of the filters, the discrete odometry
data and groudtruth data is interpolated to the first order
and then sampled using a fixed timestep of 0.02s. In all of
the results, 400 seconds of data is shown, beginning at t =
1288971880.0.

The initial mean and covariance of the robot was deter-
mined using the groundtruth information. The initial mean
was set to the groundtruth location at t0, and the initial
variance was set to the variance of landmark 9 as an estimate
of the variance of the Vicon camera system.

A. Dead-reckoning vs. Filtered Path

The most explicit advantage of the unscented Kalman filter
algorithm is seen when compared to the dead-reckoning path
of the robot. Figure 2 shows the path obtained from the
robot’s odometry data alone. The predicted path is shown
in blue, while the groundtruth is green. The 15 black dots
are the landmarks measured by the robot’s camera. It is clear
that the orientation of the robot is the primary error in the
odometry. The robot starts at approximately (1,−5) in the
world, and almost instantly, begins to head in the wrong
direction. The length of the first few paths are approximately
correct between turns, however, the turning angle error is
very large.

This large error in the robot’s dead reckoning ability is
partially due to the simplification of the motion model. Since
we are assuming linear trajectories in every timestep, the
angular velocity of the robot will not be exactly updated at



Fig. 2. Dead-reckoning robot path (blue) vs. groundtruth path (green).

Fig. 3. Filtered path (blue) vs. groundtruth path (green).

each timestep. If we were relying on dead-reckoning alone,
the accuracy of the model would have to be much greater.

Fortunately, with measurement updates provided by the
robot, the unscented Kalman filter can be used to determine
the robot’s position using both the model and measurement
data. Figure 3 shows the resulting path from the filter in blue.

Although the filtered path performs significantly better
than the dead-reckoning path, the filtered path is not exact.
Significant deviations from the groundtruth path can be seen,
usually where the robot is taking sharp turns. This deviation
is due to inaccuracies in the motion model as well as a lack
of measurement updates.

B. Noise Covariances

The covariance of the predicted robot position and the
measurement updates relies on the amount of uncertainty or
noise that is assumed in the model and measurements. These
parameters are given by the covariance matrices, Rt and Qt.
Modifying these variances affects how the measurements and
predicted states are updated with the Kalman gain.

For this implementation of the unscented Kalman filter, the
range of the variance of the noise matrices was limited to ap-
proximately an order of magnitude. Increasing or deceasing
the relative variance too much caused the algorithm to fail,
since the Cholesky factorization can not be computed if the
variance matrix is very close to zero [3]. To test the impact

Fig. 4. Filtered path with greater (blue) and less (red) measurement
variance.

Fig. 5. Filtered path with varying spread parameters.

of the noise values on the filter, two tests were conducted.
Figure 4 shows the comparison between noise models. The

red path corresponds to less relative noise in the measure-
ment model with Rt = 0.002 id(3) and Qt = 0.00006 id(2)
where id(n) is the n × n identity matrix. The blue path
is greater measurement noise with Rt = 0.008 id(3) and
Qt = 0.00009 id(2). In both cases, the filtered path is very
similar; however, the red path is slightly less smooth than the
blue path since the path is skewed more toward the discrete
measurement updates.

C. Spread Parameters

The two parameters in the unscented Kalman filter, α
and β, were also tested to determine the impact on the
filtered path. In the previous tests, we set the parameters
to commonly used values, α = 0.01 and β = 0. To test the
impact on the filter, we increased the spread with α = 0.05
and β = 1. Figure 5 shows the result of this test. The path
with the standard values is in red and the increased values
in blue. For this system, it appears that the small parameter
change does not have an appreciable effect on the filter.
Increasing the values any further caused the filter to fail with
variances that approached zero.

This result may be due to the structure of the motion
and measurement models. The noise distribution may be
captured fairly accurately by the sigma points close to the



mean and increasing the spread does not help to capture
additional information on the nonlinear system. For different
systems or implementations, the spread parameters would
be expected to have a measurable effect on the filtering
algorithm’s performance.

V. CONCLUSION

Overall, the unscented Kalman filter has been shown to
be much more successful at predicting the path of a mobile
robot than odometry alone. The resulting path from the
filtering algorithm has a relatively bounded error throughout
the path, despite errors in the motion and measurement
models.

Because of the simplified version of the unscented Kalman
filter, the valid noise covariances that the filter could handle
were limited. Decreasing the measurement noise did cause
the updates to rely more heavily on the measurements;
however, the difference in overall path is minimal. An imple-
mentation of the more sophisticated localization version may
increase the accuracy of the model and range of covariances
that can be successfully implemented with the filter.

The spread parameters were also investigated, but the
limited range of the parameters led to little change in the
overall predicted path of the robot.

Given the non-linearities of the motion and measurement
models, the unscented Kalman filter is provides a decent rep-
resentation of the actual path of the robot. The computation
time of the algorithm was 11.8 sec to filter 400 sec of data;
therefore, the algorithm could easily be implemented in a
real-time environment. With more sophisticated numerical
techniques, the covariance matrices could most likely be
further tuned to provide even better tracking of the robot
trajectory.
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Unscented Kalman Filter - Dataset #1

ü Data Import & Processing

odomdata = Drop@Import@"Robot3_Odometry.dat"D, 81, 5<D;

knownpose = Drop@Import@"Robot3_Groundtruth.dat"D, 81, 4<D;

measuredata = Drop@Import@"Robot3_Measurement.dat"D, 81, 4<D;

landmarkdata = Drop@Import@"Landmark_Groundtruth.dat"D, 81, 4<D;

odomdata1 = odomdata − Join@8ConstantArray@odomdata@@1, 1DD, Length@odomdataDD<�,

ConstantArray@0, 8Length@odomdataD, 2<D, 2D;

knownpose1 = knownpose − Join@8ConstantArray@odomdata@@1, 1DD, Length@knownposeDD<�,

ConstantArray@0, 8Length@knownposeD, 3<D, 2D;

measuredata1 = measuredata − Join@8ConstantArray@odomdata@@1, 1DD, Length@measuredataDD<�,

ConstantArray@0, 8Length@measuredataD, 3<D, 2D;

odominterp = 8Interpolation@Thread@8odomdata1@@All, 1DD, odomdata1@@All, 2DD<D,

InterpolationOrder → 1D@sD, Interpolation@

Thread@8odomdata1@@All, 1DD, odomdata1@@All, 3DD<D, InterpolationOrder → 1D@sD<;

knowninterp = 8Interpolation@Thread@8knownpose1@@All, 1DD, knownpose1@@All, 2DD<D,

InterpolationOrder → 1D@sD, Interpolation@

Thread@8knownpose1@@All, 1DD, knownpose1@@All, 3DD<D, InterpolationOrder → 1D@sD,

Interpolation@Thread@8knownpose1@@All, 1DD, knownpose1@@All, 4DD<D,

InterpolationOrder → 1D@sD<;

groundtruth@t_D := knowninterp ê. s → t

modeldata@t_D := odominterp ê. s → t

barcodes = Drop@Import@"Barcodes.dat"D, 81, 4<D;

subject@barcode_D := barcodes@@Position@barcodes@@All, 2DD, barcodeD@@1, 1DD, 1DD;

ü Algorithm Parameters

n = 3; k = 0; α = 0.01; Β = 0; kj = −1;

λ = α^2 Hn + kL − n;

γ = Sqrt@n + λD;

t0 = 50;

tf = 450;

dt = 0.02;

µ@Round@t0 ê dtDD = groundtruth@t0D;

Σ@Round@t0 ê dtDD = 880.00004077, 0, 0<, 80, 0.00008785, 0<, 80, 0, 0.00001<<;

R@t_D := 880.00009, 0, 0<, 80, 0.00009, 0<, 80, 0, 0.00009<<;

Q@t_D := 880.008, 0<, 80, 0.008<<;

H∗ Turn the measurement update step on or off ∗L

measureupdate = 1;

ü Filtering Algorithm

H∗ Calculate sigma point weights ∗L

ωm@i_D := Piecewise@88λ ê Hn + λL, i  0<, 81 ê H2 Hn + λLL, i ≠ 0<<D;

ωc@i_D := Piecewise@88λ ê Hn + λL + H1 − α^2 + ΒL, i  0<, 81 ê H2 Hn + λLL, i ≠ 0<<D;

H∗ Create hHxL measurement model function ∗L



h@landmark_D := 8Sqrt@HConstantArray@landmark@@1DD, 2 n + 1D − Sigmabar@kD@@All, 1DDL^2 +

HConstantArray@landmark@@2DD, 2 n + 1D − Sigmabar@kD@@All, 2DDL^2D,

ArcTan@ConstantArray@landmark@@1DD, 2 n + 1D − Sigmabar@kD@@All, 1DD, ConstantArray@

landmark@@2DD, 2 n + 1D − Sigmabar@kD@@All, 2DDD − Sigmabar@kD@@All, 3DD<�;

H∗ Determine the first measurement data point after the starting time, t0 ∗L

j = 1;

While@measuredata1@@j, 1DD ≤ t0,

j += 1;

D;

H∗ Begin timestepping from t0 ∗L

For@k = Round@t0 ê dtD + 1, k < tf ê dt, k++,

H∗ Calculate noise−free sigma points −

using Cholesky factorization to provide a matrix square root ∗L

Msqrt@k − 1D = CholeskyDecomposition@Hn + λL Σ@k − 1DD;

Sigma@k − 1D = 8µ@k − 1D, µ@k − 1D + Msqrt@k − 1D@@All, 1DD, µ@k − 1D − Msqrt@k − 1D@@All, 1DD,

µ@k − 1D + Msqrt@k − 1D@@All, 2DD, µ@k − 1D − Msqrt@k − 1D@@All, 2DD,

µ@k − 1D + Msqrt@k − 1D@@All, 3DD, µ@k − 1D − Msqrt@k − 1D@@All, 3DD< êê Chop;

Sigmastar@kD =

8modeldata@k dtD@@1DD Cos@Sigma@k − 1D@@All, 3DDD, modeldata@k dtD@@1DD Sin@Sigma@k − 1D@@

All, 3DDD, modeldata@k dtD@@2DD ConstantArray@1, 2 n + 1D<� dt + Sigma@k − 1D;

µbar@kD = Sum@ωm@iD Sigmastar@kD@@i + 1DD, 8i, 0, 2 n<D;

H∗ Need to handle orientation angle roll−over. Maps points to @−π,πD ∗L

If@µbar@kD@@3DD ≥ Pi,

µbar@kD = Append@µbar@kD@@1 ;; 2DD, µbar@kD@@3DD − 2 PiD;

Sigmastar@kD = Join@Sigmastar@kD@@All, 1 ;; 2DD,

Sigmastar@kD@@All, 3DD − 8ConstantArray@2 Pi, 2 n + 1D<�, 2D;

D;

If@µbar@kD@@3DD ≤ −Pi,

µbar@kD = Append@µbar@kD@@1 ;; 2DD, µbar@kD@@3DD + 2 PiD;

Sigmastar@kD = Join@Sigmastar@kD@@All, 1 ;; 2DD,

Sigmastar@kD@@All, 3DD + 8ConstantArray@2 Pi, 2 n + 1D<�, 2D;

D;

Σbar@kD =

Sum@ωc@iD Outer@Times, Sigmastar@kD@@i + 1DD − µbar@kD, Sigmastar@kD@@i + 1DD − µbar@kDD,

8i, 0, 2 n<D + R@kD;

H∗ Calculate predicted sigma points with variance information ∗L

Msqrtbar@kD = CholeskyDecomposition@Hn + λL Σbar@kDD;

Sigmabar@kD = 8µbar@kD, µbar@kD + Msqrtbar@kD@@All, 1DD, µbar@kD − Msqrtbar@kD@@All, 1DD,

µbar@kD + Msqrtbar@kD@@All, 2DD, µbar@kD − Msqrtbar@kD@@All, 2DD,

µbar@kD + Msqrtbar@kD@@All, 3DD, µbar@kD − Msqrtbar@kD@@All, 3DD< êê Chop;

H∗ If no measurement update, this becomes mean and variance for next timestep ∗L

Σ@kD = Σbar@kD;

µ@kD = µbar@kD;
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H∗ Measurement update routine ∗L

If@measureupdate  1,

While@measuredata1@@j, 1DD < k dt,

H∗ Filter out measurements of other robots ∗L

If@subject@measuredata1@@j, 2DDD ≥ 6 && subject@measuredata1@@j, 2DDD ≤ 20,

If@k  kj,

H∗ In case of two measurements available over one timestep,

need to recompute sigma points without model update ∗L

Msqrt@kD = CholeskyDecomposition@Hn + λL Σ@kDD;

Sigma@kD = 8µ@kD, µ@kD + Msqrt@kD@@All, 1DD,

µ@kD − Msqrt@kD@@All, 1DD, µ@kD + Msqrt@kD@@All, 2DD, µ@kD − Msqrt@kD@@All, 2DD,

µ@kD + Msqrt@kD@@All, 3DD, µ@kD − Msqrt@kD@@All, 3DD< êê Chop;

Sigmastar@kD = 8modeldata@k dtD@@1DD Cos@Sigma@k − 1D@@All, 3DDD,

modeldata@k dtD@@1DD Sin@Sigma@k − 1D@@All, 3DDD,

modeldata@k dtD@@2DD ConstantArray@1, 2 n + 1D<� dt + Sigma@kD;

µbar@kD = Sum@ωm@iD Sigmastar@kD@@i + 1DD, 8i, 0, 2 n<D;

If@µbar@kD@@3DD ≥ Pi,

µbar@kD = Append@µbar@kD@@1 ;; 2DD, µbar@kD@@3DD − 2 PiD;

Sigmastar@kD = Join@Sigmastar@kD@@All, 1 ;; 2DD,

Sigmastar@kD@@All, 3DD − 8ConstantArray@2 Pi, 2 n + 1D<�, 2D;

D;

If@µbar@kD@@3DD ≤ −Pi,

µbar@kD = Append@µbar@kD@@1 ;; 2DD, µbar@kD@@3DD + 2 PiD;

Sigmastar@kD = Join@Sigmastar@kD@@All, 1 ;; 2DD,

Sigmastar@kD@@All, 3DD + 8ConstantArray@2 Pi, 2 n + 1D<�, 2D;

D;

Σbar@kD = Sum@ωc@iD Outer@Times, Sigmastar@kD@@i + 1DD − µbar@kD,

Sigmastar@kD@@i + 1DD − µbar@kDD, 8i, 0, 2 n<D + R@kD;

Msqrtbar@kD = CholeskyDecomposition@Hn + λL Σbar@kDD;

Sigmabar@kD = 8µbar@kD, µbar@kD + Msqrtbar@kD@@All, 1DD, µbar@kD − Msqrtbar@kD@@

All, 1DD, µbar@kD + Msqrtbar@kD@@All, 2DD, µbar@kD − Msqrtbar@kD@@All, 2DD,

µbar@kD + Msqrtbar@kD@@All, 3DD, µbar@kD − Msqrtbar@kD@@All, 3DD< êê Chop;

D;

H∗ Calculate predicted observation using landmark data ∗L

z@kD = measuredata1@@j, 3 ;; 4DD;

landmark@kD = landmarkdata@@subject@measuredata1@@j, 2DDD − 5, 2 ;; 3DD;

Zbar@kD = h@landmark@kDD;

zhat@kD = Sum@ωm@iD Zbar@kD@@i + 1DD, 8i, 0, 2 n<D;

H∗ In case of predicted measurement angle roll−over. Maps points to @−π,πD ∗L
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If@zhat@kD@@2DD ≥ Pi,

zhat@kD = 8zhat@kD@@1DD, zhat@kD@@2DD − 2 Pi<;

Zbar@kD =

Join@8Zbar@kD@@All, 1DD<�, Zbar@kD@@All, 2DD − 8ConstantArray@2 Pi, 2 n + 1D<�, 2D;

D;

If@zhat@kD@@2DD ≤ −Pi,

zhat@kD = 8zhat@kD@@1DD, zhat@kD@@2DD + 2 Pi<;

Zbar@kD =

Join@8Zbar@kD@@All, 1DD<�, Zbar@kD@@All, 2DD + 8ConstantArray@2 Pi, 2 n + 1D<�, 2D;

D;

S@kD = Sum@ωc@iD Outer@Times, Zbar@kD@@i + 1DD − zhat@kD, Zbar@kD@@i + 1DD − zhat@kDD,

8i, 0, 2 n<D + Q@kD;

Σbarxz@kD = Sum@ωc@iD Outer@Times,

Sigmabar@kD@@i + 1DD − µbar@kD, Zbar@kD@@i + 1DD − zhat@kDD, 8i, 0, 2 n<D;

H∗ Calculate Kalman gain ∗L

K@kD = Σbarxz@kD.Inverse@S@kDD;

H∗ update mean and variance with observation based on Kalman gain ∗L

µ@kD = µbar@kD + K@kD.Hz@kD − zhat@kDL;

Σ@kD = Σbar@kD − K@kD.S@kD.K@kD�;

j = j + 1;

kj = k;

,

j = j + 1;

D;

D;

D;

D;

ü Robot Animation - Plots last 1000 timesteps of filtered path and groundtruth

Animate@Show@ListPlot@Table@groundtruth@tD@@1 ;; 2DD, 8t, m dt − 1000 dt, m dt, 5 dt<D,

PlotStyle → Red, PlotRange → 88−2, 5<, 8−6, 6<<D,

ListPlot@Table@µ@kD@@1 ;; 2DD, 8k, m − 1000, m, 5<DD,

Graphics@8PointSize@LargeD, Table@Point@landmarkdata@@i, 2 ;; 3DDD, 8i, 1, 15<D<DD,

8m, Round@t0 ê dtD + 1001, tf ê dt − 1, 50<, AnimationRate → 400D

ü Plot of total filtered path vs. groundtruth path

Show@ListPlot@Table@groundtruth@tD@@1 ;; 2DD, 8t, t0, tf, dt<D,

PlotStyle → Green, PlotRange → 88−2, 5<, 8−6, 6<<D,

ListPlot@Table@µ@kD@@1 ;; 2DD, 8k, Round@t0 ê dtD, tf ê dt − 1, 1<DD,

Graphics@8PointSize@LargeD, Table@Point@landmarkdata@@i, 2 ;; 3DDD, 8i, 1, 15<D<DD
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